

REPORT TO

PATHWAYS PROPERTY GROUP

ON

GEOTECHNICAL INVESTIGATION

FOR

PROPOSED MIXED-USE DEVELOPMENT

AT

274-278 LONGUEVILLE ROAD AND 4-18 NORTHWOOD ROAD, LANE COVE, NSW

Date: 30 July 2020 Ref: 33311STrpt

JKGeotechnics www.jkgeotechnics.com.au

T: +61 2 9888 5000 JK Geotechnics Pty Ltd ABN 17 003 550 801

Report prepared by:

Arthur Billingham

Senior Geotechnical Engineer

Report reviewed by:

Paul Stubbs

Principal | Geotechnical Engineer

For and on behalf of JK GEOTECHNICS PO BOX 976 NORTH RYDE BC NSW 1670

DOCUMENT REVISION RECORD

Report Reference	Report Status	Report Date
33311STrpt	Final Report	30 July 2020

© Document copyright of JK Geotechnics

This report (which includes all attachments and annexures) has been prepared by JK Geotechnics (JKG) for its Client, and is intended for the use only by that Client.

This Report has been prepared pursuant to a contract between JKG and its Client and is therefore subject to:

- a) JKG's proposal in respect of the work covered by the Report;
- b) The limitations defined in the Client's brief to JKG;
- c) The terms of contract between JKG and the Client, including terms limiting the liability of JKG.

If the Client, or any person, provides a copy of this Report to any third party, such third party must not rely on this Report, except with the express written consent of JKG which, if given, will be deemed to be upon the same terms, conditions, restrictions and limitations as apply by virtue of (a), (b), and (c) above.

Any third party who seeks to rely on this Report without the express written consent of JKG does so entirely at their own risk and to the fullest extent permitted by law, JKG accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.

At the Company's discretion, JKG may send a paper copy of this report for confirmation. In the event of any discrepancy between paper and electronic versions, the paper version is to take precedence. The USER shall ascertain the accuracy and the suitability of this information for the purpose intended; reasonable effort is made at the time of assembling this information to ensure its integrity. The recipient is not authorised to modify the content of the information supplied without the prior written consent of JKG.

Table of Contents

1	INTRO	DDUCTION	1
2	INVES	STIGATION PROCEDURE	1
3	RESU	LTS OF INVESTIGATION	2
	3.1	Site Description	2
	3.2	Subsurface Conditions	3
	3.3	Laboratory Test Results	5
4	сомі	MENTS AND RECOMMENDATIONS	5
	4.1	Excavation	5
		4.1.1 Dilapidation Surveys	5
		4.1.2 Excavation Methodology and Techniques	6
		4.1.3 Vibration Monitoring	6
		4.1.4 Groundwater	7
	4.2	Excavation Support and Retention	7
	4.3	Footings	9
		4.3.1 Proposed Building	9
		4.3.2 Telstra Tower Footings	10
	4.4	Basement Floor Slabs	11
	4.5	Further Geotechnical Input	11
5	GENE	RAL COMMENTS	11

ATTACHMENTS

STS Table A: Point Load Strength Index Test Report

Envirolab Services Certificate of Analysis No. 246917

Borehole Logs 1 to 6 Inclusive (With Core Photographs)

Figure 1: Site Location Plan

Figure 2: Borehole Location Plan

Vibration Emission Design Goals

Report Explanation Notes

1 INTRODUCTION

This report presents the results of a geotechnical investigation for the proposed mixed-use development at 274-278 Longueville Road and 4-18 Northwood Road, Lane Cove, NSW. The location of the site is shown in Figure 1. The investigation was commissioned by Mr Graeme Skerritt of Pathways Property Group by signed Acceptance of Proposal dated 19 June 2020. The investigation was completed on the basis of our fee proposal dated 19 June 2020, Ref: P52059S.

We understand from the supplied architectural drawings prepared by Morrison Design Partnership (Project No. 2924, Drawing Nos. DA101-DA106 and DA208, Revision PA1 dated 27 October 2016) that following demolition of the existing structures on the site it is proposed to construct a four-storey building over two partial and one full basement levels. The proposed basement level is at RL45.05m which will require bulk excavation to depth ranging from about 11.5m to 10.5m along Longueville and Northwood Roads, decreasing to about 6.5m on the north-eastern edge of the basement where ground surface levels fall away.

An existing Telstra transmission tower is located within the proposed building footprint and will need to be relocated prior to development commencing. The new tower location was not known at the time of fieldwork, however we have provided general recommendations regarding footings for the proposed tower within this report.

The purpose of the investigation was to obtain geotechnical information on subsurface conditions as a basis for comments and recommendations on excavation, shoring, earth pressures, groundwater and foundations.

2 INVESTIGATION PROCEDURE

The fieldwork for the investigation was completed on 2, 6 and 8 July 2020 and comprised the drilling of six boreholes (BH1 to BH6) using our track mounted JK205 drill rig. The boreholes were initially drilled using spiral auger techniques through the soils and some of the upper more weathered and lower strength rock. The rock was then core drilled to the borehole termination depth using rotary diamond coring techniques and an NMLC triple tube core barrel with water flush.

The borehole locations as shown on the attached Figure 2 were set out by taped measurements from existing surface features. The approximate surface levels of the boreholes, as shown on the borehole logs, were interpolated from nearby spot heights and contour lines on the survey plan (Ref. 16/236 dated 13 June 2016) prepared by Watson Buchan Pty Ltd. The datum is Australian Height Datum (AHD).

The apparent compaction of the fill and strength of the subsurface soils were assessed from the Standard Penetration Test (SPT) 'N' values, augmented with the results of hand penetrometer tests on cohesive samples obtained from the SPT split tube sampler. Assessment of the rock strength in the augered portion of the boreholes was from observation of the drilling resistance when using a Tungsten Carbide (TC) bit on the augers and inspection of the recovered rock cuttings. It should be noted that rock strengths assessed in this way are approximate, and variations of about one order of strength should not be unexpected.

Where the rock was core drilled, the recovered rock core was placed in steel boxes and returned to our NATA registered laboratory (Soil Test Services) where it was photographed and Point Load Strength Index (Is₅₀) testing was carried out. Using established correlations, the unconfined compressive strength (UCS) of the bedrock was estimated from the Is₅₀ results. The Point Load Strength test results are summarised in the attached Soil Test Services (STS) Table A and shown on the borehole logs.

Groundwater observations were made in the boreholes during and shortly after completion of auger drilling. A monitoring well was installed in BH2 upon completion of drilling to allow longer-term monitoring. The details of the well are given in the borehole log. A return visit to site was made on the 22 July 2020 to measure groundwater within the BH2 monitoring well and a selection of wells previously installed by Douglas Partners for environmental purposes.

The fieldwork was completed in the full-time presence of our geotechnical engineers who set out the borehole locations, nominated the sampling and testing, and prepared the borehole logs. The borehole logs are attached with this report, together with a set of explanatory notes which provide further details of the investigation techniques adopted, their limitations and the logging terms and symbols used.

3 RESULTS OF INVESTIGATION

3.1 Site Description

The site is situated within ridge and gully topography and is located on the upper slope of a north-easterly facing hillside that grades down from the crest of a local ridgeline that is roughly followed by Longueville and Northwood Roads. Surface levels across the site typically slope down to the east at about 7°. The site has a western and south-western frontage with Longueville Road which continues as Northwood Road at a point roughly halfway along the site frontage.

The site is occupied by several one and two-storey commercial buildings generally of brick construction with two residential buildings at 274-274A Longueville Road. The buildings across the site typically appeared in good condition upon cursory visual observation though some stepped cracking was observed at the rear of No. 18 Northwood Road. Surface levels across the site generally slope down to the east at about 7° flattening to about 3° within the rear portion of the site. Within the property at 274A, surface levels slope overall to the east at approximately 14°, however the major changes in height are through a couple of steps in the outcropping sandstone that occur between the front and rear of the existing house. Sandstone, which appears to have been cut to allow for the construction of the existing house, was observed between 4m to 5m from the front of the residence with a sub-vertical drop of between 1.8m and 2.3m (from a top of rock level at about RL48.9m) measured across the exposed section. Another step in the sandstone was observed underneath the rear (eastern end) of the house. Between these two steps and above the higher cliff line the exposed bedrock was relatively flat. The sandstone was assessed as being distinctly weathered and mostly of low to medium strength, though the rock encountered under and near the northern edge of the house was typically very low to low.

The property at 4-10 Northwood Road is currently in use as a service station with a relatively level forecourt that appears to have been raised towards the east with fuel tanks appearing to be located on the southern side of the forecourt. At the eastern edge of the forecourt is a two-storey concrete block shop which appears to act as a retaining structure with levels sloping down to the east at about 10° through concrete driveways north and south of the shop to a lower workshop area. At the south-eastern corner of this lower area is a telecommunications monopole tower with an estimated height of 25m. A couple of lightweight equipment shelters are located at the base of the tower.

Surface levels along the north-east boundary (except at No. 274A) are retained by a series of retaining walls of sandstone block construction except at the rear of 4-10 Northwood Road. The height of the sandstone block retaining walls ranged from 1.6m to 4.2m whilst the height of the concrete block wall ranged from 1.4m to 2m. The concrete block wall appeared in good condition where observed downslope. The sandstone block walls varied in condition from poor to good with a portion of the wall at the north-eastern corner of No. 16 Northwood Road having fallen away. Stepped cracking was observed in the higher portions of the walls and vertical cracking with associated outward rotation was observed on the south-eastern corner of the wall at No. 16 Northwood Road. At the toe of the walls surface levels slope down through a heavily vegetated embankment at between 10° and 30° towards Gore Creek.

South of the site is a one- and two-storey brick house (No. 20 Northwood Road) which is set back about 3m from the common boundary. The house appeared in fair condition with stepped cracking observed at a couple of locations on the northern and western external walls. At the northern end is a hardstand driveway and parking which is formed by an approximately 1m high mass concrete retaining wall running perpendicular from the north-western corner of the house. The eastern portion of the house is surrounded by lawn.

Across the northern boundary is a two-storey brick unit building (No. 272 Longueville Road) over an undercroft car parking level which is set back about 2m from the common boundary. Surface levels across the boundary are similar and the building appeared to be in good condition upon cursory visual inspection.

3.2 Subsurface Conditions

The Sydney 1:100,000 Geological Series Sheet 9130 indicates that the site is underlain by a capping layer of Ashfield Shale which follows the ridgeline, roughly concurrent with Longueville and Northwood Roads. Underlying the Ashfield Shale is Hawkesbury Sandstone. The boreholes encountered a generalised profile comprising relatively shallow fill and residual soils overlying sandstone bedrock. A summary of the subsurface conditions is provided below however for a detailed description at each location reference should be made to the attached borehole logs.

Pavements and Fill

Pavements were encountered at surface in each borehole and were of brick (BH1), asphaltic concrete (BH5) or concrete (BH2 to BH4 and BH6) construction. The pavements were typically 60mm to 90mm thick except in the service station at Nos. 4-10 Northwood Road where the concrete was of 120mm and 130mm thickness.

Immediately underlying the pavements was a generally granular fill ranging in depth from 0.16m to 0.4m except in BH4 and BH6 where weathered sandstone and a void were encountered. Clayey fill underlay the granular base fill to depths of 0.5m (BH1 and BH2) and 1.3m (BH3) in the northern boreholes. The clays were assessed as ranging from low to high plasticity and contained inclusions of sandstone and igneous gravel. The deeper fill in BH3 was assessed as well compacted.

Residual Soils

Underlying the fill in all boreholes except BH4 residual soils were encountered to depths ranging from 0.8m to 1.7m. The residual soils within the northern boreholes (BH1 to BH3) typically comprised silty clay assessed as medium plasticity and ranging in strength from stiff to hard. Within BH5 and BH6 clayey sand grading to sand towards the bedrock horizon was encountered and was assessed as loose relative density.

Sandstone Bedrock

Weathered sandstone bedrock was encountered from depths ranging from 0.065m (BH4) to 1.7m (BH3) and reduced levels of 54.9m (BH1and BH2) to 50.1m (BH6). The surface of the bedrock appears to step and slope down towards the south-east within the site. The initial 1m of bedrock in the boreholes typically comprised an extremely weathered to very low strength layer. Below this upper more weathered material and from initial contact in BH5 and BH6, bedrock assessed as at least medium strength was encountered. The rock generally increased in strength with depth to high strength except in BH5 and BH6 where medium strength sandstone was encountered to the borehole termination depths.

Defects within the bedrock typically comprised extremely weathered and clay seams ranging from 1mm to 250mm thick though typically between 10mm and 100mm. The defect spacing generally increased with depth though significant defects were present within a roughly 2.5m and 2.0m layer present in BH5 and BH6 from depths of 4.2m and 5.9m respectively. Bedding partings and joints were also present within the bedrock and were frequently clay lined or filled with sand, clay or extremely weathered material. Roots were encountered within joints near the surface of the bedrock in BH3 and BH4.

Groundwater

No groundwater was encountered during or on completion of auger drilling in any of the boreholes. Groundwater measurements were not recorded on completion of coring due to the introduction of water into the boreholes during coring which results in artificially high measurements. Upon completion of fieldwork the core water was pumped out of the monitoring well in BH2 to a depth of 9.9m.

Groundwater levels were measured within BH2 and previously installed monitoring wells on 22 July 2020 and a summary of the measurements is presented in the table below.

Monitoring Location	Depth to Groundwater (m)	Groundwater Level (mAHD)
BH2	2.80	53.1
DP1	2.71	51.5
DP101	2.89	53.0
DP102	2.56	53.4
DP111	2.24	51.4
DP112	2.30	51.0

The above groundwater levels correlate with the horizon between the extremely weathered and moderately to slightly weathered sandstone bedrock. A distinct hydrocarbon odour was noted upon retrieving the tape measure from DP112 indicating some degree of contamination from the service station up-slope. We consider that the groundwater levels represent perched water within the more permeable extremely weathered profile above the less weathered sandstone.

3.3 Laboratory Test Results

The Is₍₅₀₎ results returned estimated unconfined compressive strength values for the sandstone ranging from 2MPa to 44MPa though typically ranging from 8MPa to 24MPa which correlates with medium to high strength bedrock.

The soil aggression testing is summarised in the table below;

Borehole No.	Sample Depth (m)	Soil Type	pH (pH units)	Chloride Content (mg/kg)	Sulphate Content (mg/kg)	Resistivity (ohm.cm)
BH1	0.5-0.95	Silty CLAY	7.6	160	290	3,600
BH3	1.7-1.95	XW Sandstone	6.3	26	<10	33,000
BH6	0.5-0.95	SAND	6.0	<10	20	48,000

These results correlate with exposure classification of 'Non-Aggressive' for both buried concrete and steel structural elements in accordance with Tables 6.4.2(C) and 6.5.2(C) of AS2159-2009 respectively.

4 COMMENTS AND RECOMMENDATIONS

4.1 Excavation

Prior to any excavation commencing we recommend that reference be made to the latest Code of Practice *Excavation Work* prepared by Safe Work Australia.

4.1.1 Dilapidation Surveys

We recommend detailed dilapidation surveys are completed on the neighbouring properties to the north and south-east prior to the start of the works. The preparation of such reports will help to guard against opportunistic claims for damage that was present prior to the start of the work. Council or other authorities may also require dilapidation surveys of their nearby assets and this should be checked prior to demolition.

The dilapidation surveys should comprise a detailed inspection of the adjoining properties, both externally and internally, with all defects rigorously described, i.e. defect location, defect type, crack width, crack length, orientation etc. The owners of the adjoining properties or relevant asset authorities should be asked to confirm that the reports represent a fair record of actual conditions. The dilapidation reports may then be used as a benchmark against which to assess possible future claims for damage arising from the works.

4.1.2 Excavation Methodology and Techniques

Bulk excavation for the proposed basement will require cuts ranging from 11.5m along the north-western boundary grading down to about 6.5m towards the south-eastern edge of the proposed basement. Excavation will encounter surficial soils however will primarily extend through sandstone bedrock. Any topsoil or root-affected soil should be stripped and stockpiled separately for re-use in landscape areas as such soils are not suitable for re-use as engineered fill.

Excavation of the soils and weathered sandstone bedrock up to very low strength should be readily achievable using conventional excavation equipment such as hydraulic excavators with buckets fitted with 'tiger teeth'. Some assistance from ripping tynes may be required for iron indurated bands within the soils and extremely weathered sandstone.

Sandstone bedrock of low or greater strength will require 'hard rock' excavation techniques such as hydraulic rock hammers, rock saws or ripping attachments. Dust resulting from rock excavation should be suppressed by spraying with water. Care will be required during excavation to control the transmission of ground vibrations where rock hammers are employed. We recommend that the boundary faces of the excavation be saw cut to minimise overbreak and instability. The saw cuts should extend below the level at which rock breakers are used to reduce transmitted vibration.

4.1.3 Vibration Monitoring

Due to the presence of the structures close to the boundaries at 272 Longueville Road and 20 Northwood Road we recommend that quantitative vibration monitoring be completed to confirm that peak particle velocities (PPV) fall within acceptable limits. Other movement sensitive infrastructure within the road reserve and site e.g. the relocated Telstra tower may also require vibration monitoring to reduce the risk of damage to infrastructure. The attached Vibration Emission Design Goals provide PPV versus vibration frequency limits to assess acceptable vibrations. We note that vibration limits will reduce the risk of vibration damage to the neighbouring buildings and structures, however vibrations may still be perceptible to occupants of neighbouring buildings. If excessive vibrations are identified by the monitoring then it will be necessary to use lower energy equipment such as smaller rock hammers and/or using rock saws to cut gridlines within the sandstone, maintaining the base of the slots below the level at which the rock hammer is being used. Full time monitoring should be used at this site due to the relatively heavy rock breakers that will be required for economic excavation and to protect all parties from inadvertent exceedances of tolerable vibration limits.

Where rock hammers are used, to reduce vibrations we recommend that the rock hammer be continually orientated towards the face, edges and points of chisels/moils be maintained and hammers to be operated one at a time and in short bursts only to reduce potential amplification of vibrations.

We recommend that only the services of excavation contractors with suitable experience and importantly with a competent supervisor who is aware of vibration damage risks, possible rock face instability issues, etc. be engaged. The contractor should be provided with a copy of this report (and any subsequent reports) and have all appropriate statutory and public liability insurances.

4.1.4 Groundwater

Based on the results of the groundwater monitoring and the site location in the local topography we consider that the groundwater levels measured within wells across the property at No. 4-10 Northwood Road represent perched water within the more permeable extremely weathered profile above the less weathered sandstone. As such groundwater seepage into the excavation should be expected particularly at the soil/rock interface and through any joints and bedding planes within the bedrock exposed in the completed cut faces, particularly after periods of heavy or prolonged rainfall. Seepage, if any, during excavation is expected to be satisfactorily controlled by conventional sump and pump techniques or gravity drainage to the stormwater system. Groundwater levels measured across the site indicate water perched within the extremely weathered sandstone bedrock and we do not anticipate that as a result of excavation and dewatering there will be an adverse impact on the neighbouring properties or on the groundwater table which drains naturally to the Gore Creek valley below the site.

We recommend that groundwater seepage into the excavation be monitored by site personnel and the results (quantity, location, source, etc.) be reported to the geotechnical and hydraulic engineers so that any unexpected conditions can be promptly addressed. In the long term, drainage should be provided behind all retaining or basement walls and below the lowest floor slabs. Disposal of water off-site may be subject to treatment due to contamination within groundwater down-gradient of the service station forecourt as identified in the previous Douglas Partners groundwater testing report.

4.2 Excavation Support and Retention

Temporary batter slopes through the relatively shallow soils and extremely weathered sandstone should be no steeper than 1 Vertical (V) in 1.5 Horizontal (H). These temporary batters will generally be achievable within the site geometry along the south-eastern edge of the building, providing all surcharge loads are kept a distance of at least 2H (where H is the height of the batter) away from the crest of these batters. Elsewhere engineered in-situ shoring will be required particularly along the frontage with Longueville and Northwood Roads where excavation extends to the boundary. Here it is important that the architect allows sufficient room in the design for temporary support as it will be some time before the bulk excavation is complete and retaining walls can be constructed up to street level. It is likely that the shoring along the road frontages will have to be approved by RMS in which case geotechnical analysis will be required once the preliminary structural design is prepared. The absolute minimum depth of material to be retained appears to generally be between 1.5m to 3m which includes the soil and upper more weathered (Class V) sandstone; the depth of the shoring will also be governed by the level of the future building slabs which will provide propping for long-term support. As a general rule it is better to run shoring piles a little deeper than the minimum indicated by interpretation of the borehole information as underpinning or otherwise reinforcing inadequate shoring is a difficult and time consuming activity.

Retaining walls will be required to support at least the upper parts of excavation batters in the long term and may be preferred for the full depth of excavation to minimise long term maintenance issues. If exposed rock faces are to be left in the basements then rigorous seam treatment would be required and provision made

for regular maintenance of perimeter drains which will tend to become filled with sand and silt which gradually erode from the face. There is also the issue of seepage flows likely to emerge sporadically on bedding and joints and which may be charged with ferruginous compounds which precipitate on contact with the air and cause unsightly build-up of sludgy residue.

Our recommendation for this site is to install a soldier pile shoring wall with reinforced shotcrete panels down through the upper zones of lower, Class V to Class III sandstone with the piles founded on the Class II or better sandstone.

Sandstone of Class III or better be cut vertically subject to inspection by an experienced geotechnical engineer. Where the rock is excessively weathered or adverse defects are present (such as inclined joints or bedding partings) stabilisation measures would likely be required which may include rock bolting, shotcreting, dental seam treatment, underpinning etc. We therefore recommend that the rock face be progressively inspected by an experienced geotechnical engineer or engineering geologist at not greater than 1.5m depth intervals and on completion, to identify adverse defects and to propose appropriate stabilisation measures. Defects evident in the rock cores indicate that a suitable budget should be allowed in the contract for these contingencies.

Footings should not be located within a distance from the crest equal to the height of the vertical rock cut, unless approval is provided by the geotechnical engineers.

Walls constructed from the base of the excavation should be waterproofed before backfilling. For the design of retaining walls, landscape walls or wall stabilisation measures the following earth pressure coefficients and subsoil parameters may be adopted:

- For design of any retaining walls that will be propped by the structure supporting a soil profile, we recommend the use of an 'at-rest' lateral earth pressure coefficient (K₀) of 0.55 for the retained profile, assuming a horizontal backfill surface.
- Where some minor movements of retaining walls may be tolerated (e.g. landscape walls), they may be designed using a triangular lateral earth pressure distribution and an 'active' earth pressure coefficient (K_a) of 0.35 for the soil profile.
- For all walls assume a pressure of 5kPa is applied by vertically cut rock faces of low to medium strength or above including a nominal backfill of about 0.3m thickness between rock and wall.
- A bulk unit weight of 20kN/m³ should be adopted for the soil profile.
- Any surcharge affecting the walls (e.g. construction traffic, pavement and ground floor slab loads, compaction stresses during backfilling, etc.) should be allowed in the design using the appropriate above earth pressure coefficients.
- The retaining walls should be designed as permanently drained. Subsurface drains should incorporate a non-woven geotextile filter fabric such as Bidim A34 to control subsoil erosion.
- The passive lateral toe resistance for retaining walls founded in sandstone of medium strength
 may be taken to be 300kPa assuming horizontal ground in front of the wall and no excavations for
 footings or service trenches. The upper 0.2m below bulk excavation level should be ignored in the
 design to cater for excavation tolerances.

- Following retaining wall construction and backfilling, we recommend that a dish drain be provided immediately uphill of the walls (where appropriate) to intercept surface water run-off. The discharge from such drains should be piped to the stormwater system.
- Backfill to retaining walls built in front of temporary soil batters should comprise engineered fill but where this is impractical due to the difficulty of compaction in confined areas we recommend that a single size durable gravel such as 20mm blue metal should be used. Blue metal does not require compaction in layers but should be tamped or vibrated until consolidation no longer occurs. A clay capping layer should be placed over the gravel and separated by a geofabric or surface slabs used to limit penetration of surface water into the backfill. Where backfill of narrow cavities in front of rock faces is required then either 2mm washed filter sand or 10mm blue metal gravel should be used.

4.3 Footings

4.3.1 Proposed Building

Excavation for the basement is expected to expose sandstone bedrock across the building footprint. Pad and strip footings may be designed using an allowable bearing pressure of 1000kPa for sandstone of at least low strength. Higher bearing pressures of 3500kPa should be feasible for most of the site within the bulk excavation. The following table outlines the depth and approximate rock classification for the four cored boreholes.

Borehole	Depth to Top of Bedrock Class* (m) [Approximate Reduced Level at Top of Bedrock Class (mAHD)]				
	V	IV	III	II or better	
1	1.1 [54.9]	2.4 [53.6]	-	7.0 [49.0]	
2	1.0 [54.9]	-	2.6 [53.3]†	8.0 [47.9]	
3	1.7 [52.0]	-	4.6 [49.1]	8.5 [45.2]	
4	0.1 [54.0]	1.1 [53.0]	-	6.2 [47.9]	
5	0.6 [51.7]	-	0.9 [51.4]++	6.6 [45.7]	
6	-	-	1.0 [50.1]‡	>9.6 [<41.5]	

Notes on above table:

The following table presents serviceability end bearing pressures and allowable shaft adhesion values for the various rock classes as assessed in the table above. Where foundations are designed to found on Class II or better sandstone additional boreholes should be drilled to confirm the depth and presence of this stratum across the site particularly below the eastern portion of the ground floor footprint; spoon testing of footings may also be required. Where shoring piles are founded on Class II sandstone above BEL an ABP of up to 2,000kPa may be adopted.

Allowable and Ultimate Bearing Pressures

^{*} Classification based on Foundations on Shale and Sandstone in the Sydney Region by Pells et al. (1998)

[†] Note a band of Class IV sandstone is present at 7.0m to 8.0m depth. 2

^{††} Note a band of Class V sandstone is present at 4.2m to 6.6m depth. 5

 $[\]ddagger$ Note a band of Class V sandstone is present at 5.9m to 7.8m depth.6

Classification of Sandstone	Allowable End Bearing Pressure (MPa)	Allowable Shaft Adhesion (kPa)*	Ultimate End Bearing Pressure (MPa)
V	0.8	50	3
IV	1.5	150	6
III	3.5	350	20
II or better	6.0	600	50

^{*} Based on 'R2' roughness. When calculating shaft adhesion in tension (i.e. uplift) for the above rock profiles, the allowable shaft adhesion values above are to be halved.

Footings may also be designed using Limit State analysis procedures based on the ultimate end bearing pressures in the table above. Ultimate material values must be used in conjunction with an appropriate geotechnical reduction factor (ϕ_g) which must be calculated in accordance with the methodology outlined in AS2159-2009. The use of ultimate values will result in higher settlements and therefore specific analysis must be carried out to confirm that it is consistent with the required structural performance. Ultimate bearing pressures must only be adopted for footings founded below BEL. We can provide further advice in that regard if requested.

As a minimum requirement, the initial stages of footing excavation should be inspected by a geotechnical engineer to confirm that the recommended foundation has been reached and to check initial assumptions about foundation conditions and possible variations that may occur between borehole locations. The need for further inspections can be assessed following the initial visit. We can assist with the future geotechnical inspections if you wish to commission us at the appropriate time.

All footings should be excavated, cleaned, inspected and poured with minimal delay. If delays in pouring high level footings on weak, weathered rock are anticipated we recommend that the footing base be covered with a protective blinding layer of concrete.

4.3.2 Telstra Tower Footings

Footings for the proposed Telstra tower may comprise piled or pad footings which we recommend be founded within weathered sandstone. Depending on the final location and the depth to bedrock, the allowable end bearing and shaft adhesions in Section 4.3.1 may be adopted for design of footings on bedrock for the tower and equipment shelter. For the tower we anticipate that the vertical loads on the proposed foundation will be relatively light, and that the most critical loading is likely to be lateral and moment loading which will be transferred to the foundation. The following parameters may be adopted for footing design with respect to latera loading on single piled footings. The capacity should be checked for both drained and undrained conditions. The upper soil should be ignored in the lateral load calculation.

Stratum	c' (kPa)	φ' (°)	cu (kPa)	E' (kPa)
XW/HW sandstone	10	30	300	50
Low or higher strength sandstone	100	35	500	200

If large pad footings are excavated to depths greater than 1.5m through soil and extremely weathered sandstone below existing ground surface levels then the sides of the excavation must be temporarily battered or benched or supported by a shoring system to reduce the risk to personnel working in the base of the

excavation. Temporary batters or benches should be formed no steeper than 1V:1H. Sub-vertical cuts through low or greater strength rock may be suitable subject to inspection by a geotechnical engineer.

It is important that the design does not transfer lateral loads into the perimeter shoring system unless it has been designed to accommodate them. We recommend that the design be reviewed by JK Geotechnics prior to construction. Alternatively, the tower could be incorporated into the permanent structure rather than being a stand-alone structure.

4.4 Basement Floor Slabs

We expect that weathered sandstone will be uniformly exposed at bulk excavation level for the basement floor slabs. A subbase layer of durable, clean gravel should be placed below the slab to act as a separation layer between the basement and the bedrock and provide drainage.

As noted in Section 4.2, suitable long-term drainage should be allowed for behind all retaining walls, at the base of all sandstone cut faces and below the slab with a longitudinal fall to appropriate discharges. The gravel subbase layer could be incorporated as a drainage layer by using a free-draining granular material free of plastic fines or alternatively, a grid of subsoil drains could be constructed below the slab and subbase layer to capture seepage.

4.5 Further Geotechnical Input

The following is a summary of the further geotechnical input which is required and which has been detailed in the preceding sections of this report:

- Review of shoring design.
- Vibration monitoring/advice if excavation using hydraulic rock hammers is carried out.
- Progressive geotechnical inspections of rock cuts every 1.5m of vertical excavation.
- Inspection of footing excavations.

5 GENERAL COMMENTS

The recommendations presented in this report include specific issues to be addressed during the construction phase of the project. In the event that any of the construction phase recommendations presented in this report are not implemented, the general recommendations may become inapplicable and JK Geotechnics accept no responsibility whatsoever for the performance of the structure where recommendations are not implemented in full and properly tested, inspected and documented.

Occasionally, the subsurface conditions between the completed boreholes may be found to be different (or may be interpreted to be different) from those expected. Variation can also occur with groundwater conditions, especially after climatic changes. If such differences appear to exist, we recommend that you immediately contact this office.

This report provides advice on geotechnical aspects for the proposed civil and structural design. As part of the documentation stage of this project, Contract Documents and Specifications may be prepared based on our report. However, there may be design features we are not aware of or have not commented on for a variety of reasons. The designers should satisfy themselves that all the necessary advice has been obtained. If required, we could be commissioned to review the geotechnical aspects of contract documents to confirm the intent of our recommendations has been correctly implemented.

A waste classification is required for any soil and/or bedrock excavated from the site prior to offsite disposal. Subject to the appropriate testing, material can be classified as Virgin Excavated Natural Material (VENM), Excavated Natural Material (ENM), General Solid, Restricted Solid or Hazardous Waste. Analysis can take up to seven to ten working days to complete, therefore, an adequate allowance should be included in the construction program unless testing is completed prior to construction. If contamination is encountered, then substantial further testing (and associated delays) could be expected. We strongly recommend that this requirement is addressed prior to the commencement of excavation on site.

This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose. If there is any change in the proposed development described in this report then all recommendations should be reviewed. Copyright in this report is the property of JK Geotechnics. We have used a degree of care, skill and diligence normally exercised by consulting engineers in similar circumstances and locality. No other warranty expressed or implied is made or intended. Subject to payment of all fees due for the investigation, the client alone shall have a licence to use this report. The report shall not be reproduced except in full.

Macquarie Park NSW 2113 Telephone: 02 9888 5000 Facsimile: 02 9888 5001

TABLE A POINT LOAD STRENGTH INDEX TEST REPORT

Client: JK Geotechnics Ref No: 33311ST

Project: Proposed Mixed Use Development Report: A

Location: 274-274A Longueville Road & **Report Date:** 20/07/2020

4-18 Northwood Road, Longueville, NSW Page 1 of 6

BOREHOLE	DEPTH	I _{S (50)}	ESTIMATED UNCONFINED
NUMBER			COMPRESSIVE STRENGTH
	m	MPa	(MPa)
1	2.48 - 2.53	1.0	20
	2.90 - 2.93	0.6	12
	2.24 - 2.29	0.7	14
	2.63 - 2.68	0.9	18
	4.26 - 4.31	0.8	16
	4.87 - 4.92	0.5	10
	5.31 - 5.36	0.5	10
	5.87 - 5.92	1.6	32
	6.09 - 6.14	0.5	10
	6.54 - 6.59	0.1	2
	7.06 - 7.11	1.2	24
	7.69 - 7.73	0.5	10
	8.00 - 8.04	0.4	8
	8.22 - 8.27	1.0	20
	8.67 - 8.72	0.8	16
	9.04 - 9.09	0.7	14
	9.46 - 9.50	1.0	20
	9.90 - 9.94	1.1	22
	10.19 - 10.24	0.8	16
	10.82 - 10.87	1.0	20
	11.11 - 11.15	0.7	14
	11.74 - 11.79	1.2	24
	12.24 - 12.29	1.2	24
	12.85 - 12.89	1.3	26
	13.23 - 13.28	1.5	30

Macquarie Park NSW 2113 Telephone: 02 9888 5000 Facsimile: 02 9888 5001

TABLE A POINT LOAD STRENGTH INDEX TEST REPORT

Client: JK Geotechnics Ref No: 33311ST

Project:Proposed Mixed Use DevelopmentReport:ALocation:274-274A Longueville Road &Report Date:20/07/2020

cation: 274-274A Longueville Road & Report Date: 4-18 Northwood Road, Longueville, NSW Page 2 of 6

BOREHOLE	DEPTH	I _{S (50)}	ESTIMATED UNCONFINED
NUMBER			COMPRESSIVE STRENGTH
	m	MPa	(MPa)
1	13.82 - 13.87	1.4	28
	14.13 - 14.18	1.2	24
2	2.92 - 2.96	1.2	24
	3.10 - 3.13	0.7	14
	3.86 - 3.90	0.2	4
	4.21 - 4.24	1.3	26
	4.82 - 4.85	0.7	14
	5.13 - 5.16	1.5	30
	5.72 - 5.76	0.7	14
	6.14 - 6.18	0.6	12
	6.75 - 6.79	0.8	16
	7.03 - 7.07	0.4	8
	7.66 - 7.69	1.4	28
	8.16 - 8.20	1.2	24
	8.78 - 8.82	1.0	20
	9.20 - 9.24	1.3	26
	9.75 - 9.86	1.3	26
	10.09 - 10.14	0.8	16
	10.80 - 10.84	1.6	32
	11.15 - 15.20	1.6	32
	11.58 - 11.63	1.1	22
	12.11 - 12.16	1.3	 26
	12.87 - 12.92	1.5	30
	13.06 - 13.11	1.6	32
	13.90 - 13.95	1.0	20

Macquarie Park NSW 2113 Telephone: 02 9888 5000 Facsimile: 02 9888 5001

TABLE A POINT LOAD STRENGTH INDEX TEST REPORT

Client: JK Geotechnics Ref No: 33311ST

Project: Proposed Mixed Use Development Report: A

Location: 274-274A Longueville Road & **Report Date:** 20/07/2020

4-18 Northwood Road, Longueville, NSW Page 3 of 6

BOREHOLE	DEPTH	I _{S (50)}	ESTIMATED UNCONFINED
NUMBER		-3 (50)	COMPRESSIVE STRENGTH
	m	MPa	(MPa)
3	2.92 - 2.97	0.5	10
	3.42 - 3.46	0.2	4
	3.78 - 3.82	0.7	14
	4.66 - 4.71	0.6	12
	5.11 - 5.16	0.6	12
	5.70 - 5.75	0.7	14
	6.26 - 6.30	0.4	8
	6.66 - 6.70	0.3	6
	7.09 - 7.13	0.2	4
	7.74 - 7.74	0.5	10
	8.25 - 8.29	0.4	8
	8.54 - 8.59	0.6	12
	9.19 - 9.22	1.1	22
	9.69 - 9.74	0.6	12
	10.00 - 10.04	0.7	14
	1064 - 10.69	1.0	20
	11.10 - 11.15	1.3	26
	11.77 - 11.81	1.4	28
4	1.70 - 1.75	0.8	16
	2.39 - 2.43	1.5	30
	2.84 - 2.88	0.2	4
	3.25 - 3.30	0.2	4
	3.68 - 3.72	0.09	2
	3.86 - 3.90	0.7	14
NOTES S	4.10 - 4.14	1.4	28

Macquarie Park NSW 2113 Telephone: 02 9888 5000 Facsimile: 02 9888 5001

TABLE A POINT LOAD STRENGTH INDEX TEST REPORT

Client: JK Geotechnics Ref No: 33311ST

Project: Proposed Mixed Use Development Report: A

Location: 274-274A Longueville Road & **Report Date:** 20/07/2020

4-18 Northwood Road, Longueville, NSW Page 4 of 6

BOREHOLE	DEPTH	I _{S (50)}	ESTIMATED UNCONFINED
NUMBER			COMPRESSIVE STRENGTH
	m	MPa	(MPa)
4	4.95 - 5.00	0.2	4
	5.25 - 5.30	0.2	4
	5.71 - 5.76	0.09	2
	5.95 - 6.00	0.2	4
	6.03 - 6.07	0.3	6
	6.29 - 6.33	2.2	44
	6.87 - 6.91	1.6	32
	7.28 - 7.32	1.3	26
	7.62 - 7.67	0.9	18
	7.96 - 8.00	1.4	28
	8.20 - 8.25	1.1	22
	8.79 - 8.84	1.1	22
	9.24 - 9.29	0.9	18
	9.77 - 9.82	0.7	14
	10.13 - 10.18	0.9	18
	10.55 - 10.60	1.1	22
	11.07 - 11.12	1.1	22
	11.75 - 11.80	1.1	22
	12.23 - 12.27	1.1	22
	12.72 - 12.76	1.3	26
	13.09 - 13.14	1.4	28
	13.88 - 13.42	1.3	26
5	0.91 - 0.95	0.8	16
	1.13 - 1.17	1.0	20
	1.64 - 1.69	1.3	26

Macquarie Park NSW 2113 Telephone: 02 9888 5000 Facsimile: 02 9888 5001

TABLE A POINT LOAD STRENGTH INDEX TEST REPORT

Client: JK Geotechnics Ref No: 33311ST

Project: Proposed Mixed Use Development Report: A

Location: 274-274A Longueville Road & **Report Date:** 20/07/2020

4-18 Northwood Road, Longueville, NSW Page 5 of 6

BOREHOLE	DEPTH	I _{S (50)}	ESTIMATED UNCONFINED
NUMBER		-3 (30)	COMPRESSIVE STRENGTH
	m	MPa	(MPa)
5	2.15 - 2.18	1.0	20
	2.80 - 2.84	1.0	20
	3.20 - 3.25	1.0	20
	3.78 - 3.82	0.9	18
	4.00 - 4.05	0.5	10
	4.43 - 4.48	0.3	6
	5.52 - 5.56	0.2	4
	6.09 - 6.13	0.09	2
	6.70 - 6.74	0.2	4
	7.14 - 7.18	0.4	8
	7.70 - 7.75	0.7	14
	8.18 - 8.22	0.9	18
	8.70 - 8.74	0.7	14
	9.21 - 9.25	0.6	12
	9.75 - 9.81	0.8	16
6	1.33 - 1.38	0.7	14
	2.04 - 2.07	0.5	10
	2.66 - 2.71	0.4	8
	3.22 - 3.27	0.7	14
	3.75 - 3.79	0.6	12
	4.23 - 4.27	0.3	6
	4.75 - 4.78	0.8	16
	5.06 - 5.11	0.6	12
	5.73 - 5.77	0.4	8
NOTES O D	6.15 - 6.20	0.5	10

Macquarie Park NSW 2113 Telephone: 02 9888 5000 Facsimile: 02 9888 5001

TABLE A POINT LOAD STRENGTH INDEX TEST REPORT

Client: JK Geotechnics Ref No: 33311ST

Project: Proposed Mixed Use Development Report: A

Location: 274-274A Longueville Road & **Report Date:** 20/07/2020

4-18 Northwood Road, Longueville, NSW Page 6 of 6

BOREHOLE	DEPTH	I _{S (50)}	ESTIMATED UNCONFINED
NUMBER			COMPRESSIVE STRENGTH
	m	MPa	(MPa)
6	6.78 - 6.82	0.7	14
	7.21 - 7.26	0.09	2
	7.82 - 7.87	0.6	12
	8.20 - 8.25	0.3	6
	8.95 - 8.98	0.5	10
	9.27 - 9.32	0.4	8

NOTES:

- 1. In the above table testing was completed in the Axial direction.
- The above strength tests were completed at the 'as received' moisture content.
- 3. Test Method: RMS T223.
- 4. For reporting purposes, the $I_{S(50)}$ has been rounded to the nearest 0.1MPa, or to one significant figure if less than 0.1MPa
- 5. The Estimated Unconfined Compressive Strength was calculated from the point load Strength Index by the following approximate relationship and rounded off to the nearest whole number:

 $U.C.S. = 20 I_{S (50)}$

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 246917

Client Details	
Client	JK Geotechnics
Attention	Arthur Billingham
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	33311ST, Lane Cove
Number of Samples	3 Soil
Date samples received	14/07/2020
Date completed instructions received	14/07/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	21/07/2020
Date of Issue	20/07/2020
NATA Accreditation Number 2901. Thi	s document shall not be reproduced except in full.
Accredited for compliance with ISO/IEG	C 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By

Priya Samarawickrama, Senior Chemist

Authorised By

Nancy Zhang, Laboratory Manager

Envirolab Reference: 246917 Revision No: R00

Misc Inorg - Soil				
Our Reference		246917-1	246917-2	246917-3
Your Reference	UNITS	1	3	6
Date Sampled		08/07/2020	06/07/2020	03/07/2020
Type of sample		Soil	Soil	Soil
Date prepared	-	16/07/2020	16/07/2020	16/07/2020
Date analysed	-	16/07/2020	16/07/2020	16/07/2020
pH 1:5 soil:water	pH Units	7.6	6.3	6.0
Chloride, Cl 1:5 soil:water	mg/kg	160	26	<10
Sulphate, SO4 1:5 soil:water	mg/kg	290	<10	20
Resistivity in soil*	ohm m	36	330	480

Envirolab Reference: 246917 Revision No: R00

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25oC in accordance with APHA 22nd ED 2510 and Rayment & Lyons. Resistivity is calculated from Conductivity (non NATA). Resistivity (calculated) may not correlate with results otherwise obtained using Resistivity-Current method, depending on the nature of the soil being analysed.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.

Envirolab Reference: 246917 Page | 3 of 6

QUALITY	CONTROL:	Misc Ino	rg - Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	246917-3
Date prepared	-			16/07/2020	[NT]		[NT]	[NT]	16/07/2020	16/07/2020
Date analysed	-			16/07/2020	[NT]		[NT]	[NT]	16/07/2020	16/07/2020
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]		[NT]	[NT]	102	[NT]
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]		[NT]	[NT]	110	99
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]		[NT]	[NT]	116	122
Resistivity in soil*	ohm m	1	Inorg-002	<1	[NT]		[NT]	[NT]	100	[NT]

Envirolab Reference: 246917

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 246917

Quality Contro	ol Definitions					
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.					
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.					
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.					
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.					
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.					

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 246917 Page | 6 of 6

BOREHOLE LOG

Borehole No.

1

1 / 3

Client: PATHWAYS PROPERTY GROUP

Project: PROPOSED MIXED USED DEVELOPMENT

Location: 274-274A LONGUEVILLE ROAD & 4-18 NORTHWOOD ROAD, LANE COVE, NSW

Job No.: 33311ST Method: SPIRAL AUGER R.L. Surface: ~56.0 m

Date: 8/7/20 **Datum:** AHD

		Тур	e: JK205				Log	gged/Checked By: B.A./A.B.			,	
Groundwater Record	MAS N20	PLES BO SO	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
N N O							_	BRICK LAYER: 60mm.t	М			
DRY ON COMPLETION OF AUGERING				-	-		_	FILL: Sand, fine to medium grained, yellow brown, with fine to medium grained ironstone and sandstone gravel.	w~PL			- - -
			N = 10 4,4,6	-	-		CI	FILL: Sandy clay, low to medium plasticity, grey and dark brown, trace of fine to medium grained sandstone gravel, trace of slag and root fibres.	w~PL	Hd	500 >600 >600	- RESIDUAL - - -
				55 -	1		-	Silty CLAY: medium plasticity, brown, yellow brown and orange brown, trace of fine grained sand and root fibres.	DW	VL - L		- HAWKESBURY - SANDTONE
2200				-	-			SANDSTONE: fine to medium grained, light grey and brown.				- - LOW 'TC' BIT - RESISTANCE
2000				54 -	2-							- - -
i con				-	_							- - -
1000				-	_			REFER TO CORED BOREHOLE LOG				-
5				1	-							- -
				-	-							-
3				53 –	3-							_
				-	-							-
ובינו במניימים במנו וווימות מלה במני במני מני מני מני מני מני מני מני מני מני				-	-	_						-
				-	-	-						- -
3				-	_							-
				52 –	4							-
]								-
					_							-
												-
D.					_							-
				_ 1	-							- -
5				51 –	5-							- -
				1	-	-						-
5				-	-	_						-
3				-	-							
				+	-	-						-
j				50 -	6-							_
				-	-							-
S				-	_							- -
				-	_							- -
פו פיסבים ביסף פון אססבועוסבר בישטוביו מסוום בעובססגר				=	-							- -
<u> </u>												_

COPYRIGHT

CORED BOREHOLE LOG

Borehole No.

2 / 3

Client: PATHWAYS PROPERTY GROUP

Project: PROPOSED MIXED USED DEVELOPMENT

Location: 274-274A LONGUEVILLE ROAD & 4-18 NORTHWOOD ROAD, LANE COVE, NSW

Job No.: 33311ST Core Size: NMLC R.L. Surface: ~56.0 m

Date: 8/7/20 Inclination: VERTICAL Datum: AHD

Plant Type: JK205 Bearing: N/A Logged/Checked By: B.A./A.B.

				011200	Dearing. 14/				Logged/offecked by. D.A./A.B.	
					CORE DESCRIPTION			POINT LOAD STRENGTH		
Water Loss\Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	NDEX °(20)	(mm) Type, orientation, defect shape and	Formation
100% RETURN RETURN		53 - 52 - 51 - 50 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -	4	Graph	START CORING AT 2.41m SANDSTONE: fine to medium grained, light grey, with dark grey laminae, bedded at 0-15°.	Weath Weath	M - H	1.0 1.0	Seams, openness and thickness Specific General	Hawkesbury Sandstone Forms
		- - -			as above, but with red brown and orange brown iron indurated bands.			1 1.0 1 1.0 1 40.80 1 1 1		

CORED BOREHOLE LOG

Borehole No.

3 / 3

Client: PATHWAYS PROPERTY GROUP

Project: PROPOSED MIXED USED DEVELOPMENT

Location: 274-274A LONGUEVILLE ROAD & 4-18 NORTHWOOD ROAD, LANE COVE, NSW

Job No.: 33311ST Core Size: NMLC R.L. Surface: ~56.0 m

Date: 8/7/20 Inclination: VERTICAL Datum: AHD

Plant Type: JK205 Bearing: N/A Logged/Checked By: B.A./A.B.

			_	011200							
					CORE DESCRIPTION			POINT LOAD	l	DEFECT DETAILS	
Water Oss\ evel	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	STRENGTH INDEX Is(50) Is(50)	SPACING (mm)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
AN SAZA LEGGED ENG OF CONTENT CONTENT CONTENT OF CONTENT AND AND AN ADMINISTRATION OF CONTENT		46	11-		SANDSTONE: fine to medium grained, light grey, with grey and dark grey laminae, and occasional carbonaceous bands, bedded sub-horizontally.	FR	Н	- \$\infty\$ 0.70	900	— (9.24m) Be, 2°, Ir, R, Clay Cn — (10.77m) Be, 3°, P, S, Clay Ct — (10.94m) Be, 2°, P, R, Clay Ct — (12.76m) Be, 0°, P, R, Clay Ct	Hawkesbury Sandstone
		- - -		- - - - - - - -					280	EPEN TO BE NOW! LING AND HANDLING ROPE	

BOREHOLE LOG

Borehole No.

2

1 / 3

Client: PATHWAYS PROPERTY GROUP

Project: PROPOSED MIXED USED DEVELOPMENT

Location: 274-274A LONGUEVILLE ROAD & 4-18 NORTHWOOD ROAD, LANE COVE, NSW

Job No.: 33311ST Method: SPIRAL AUGER R.L. Surface: ~55.9 m

Date: 6/7/20 **Datum:** AHD

P	lant	Тур	be : JK205		Logged/Checked By: A.B./P.S.							
Groundwater Record	SAMPLES SAMPLE		RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks	
DRY ON COMPLETION				-	-		-	CONCRETE: 130mm.t FILL: Sand, fine to coarse grained, yellow brown. FILL: Silty clay, high plasticity, grey brown, trace of fine to coarse grained igneous and ironstone gravel.	M w>PL	(Ot		8mm DIA. REINFORCEMENT 76mm TOP COVER AND 5mm DIA. REINFORCEMENT 85mm TOP COVER HAND AUGER
ON AFTER 15 HRS ON AFTER 15 HRS 2277/20 C OF CORNE			N=SPT 3/50mm REFUSAL	55 - - - 54 -	1— 2—		- CI	Silty CLAY: medium plasticity, orange brown mottled light grey, trace of fine grained sand. Extremely Weathered sandstone: SAND, fine to coarse grained, light grey, with 0.1m.t to 0.2m.t medium strength brown and red brown ironstone bands and silty clay seams. SANDSTONE: fine to medium grained.	w>PL XW	(St - VSt) D		RESIDUAL HAWKESBURY SANDSTONE VERY LOW 'TC' BIT RESISTANCE WITH MODERATE BANDS MODERATE BANDS
AN 20.24 LIBSCIE DOG UN ANDERFROLE - WAS IER ASSOCIATION OF A CHRAMING 1852 1/20.01.0201 1.00.00				53 =	3			yellow brown. REFER TO CORED BOREHOLE LOG				GROUNDWATER MONITORING WELL INSTALLED TO 12.11m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 6.11m TO 12.11m. CASING 0.11m TO 6.11m. ZASING 0.11m TO 6.11m. ZASING 0.11m COMPLETED WITH A CONCRETED GATIC COVER.

COPYRIGHT

CORED BOREHOLE LOG

Borehole No.

2

2 / 3

Client: PATHWAYS PROPERTY GROUP

Project: PROPOSED MIXED USED DEVELOPMENT

Location: 274-274A LONGUEVILLE ROAD & 4-18 NORTHWOOD ROAD, LANE COVE, NSW

Job No.: 33311ST Core Size: NMLC R.L. Surface: ~55.9 m

Date: 6/7/20 Inclination: VERTICAL Datum: AHD

Plant Type: JK205 Bearing: N/A Logged/Checked By: A.B./P.S.

	Plant Type: JK205					Bearing: N	Α		Logged/Checked By: A.B./P.S.				
						CORE DESCRIPTION			POINT LOAD		П		
Water	Loss\Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions		I _s (50)	(mm) Type, orientation, defect shape and	Formation			
01.00.01 Datget Lab and In Situ Tool - DGD Lib: JK 9.02.4.2019-05-51 Pg; JK 9.01.0.2018-03-20	100% RETURN	Barrel I	1	3	Graphic	START CORING AT 2.87m SANDSTONE: fine to medium grained, red brown and light grey, bedded sub-horizontally. SANDSTONE: fine to medium grained, light grey, with grey bands, bedded sub-horizontally. SANDSTONE: fine grained, light grey, with grey and orange brown bands, bedded sub-horizontally. Extremely Weathered siltstone: silty CLAY, medium plasticity, dark grey. SANDSTONE: fine to medium grained, light grey, grey bands, bedded at 0-10°.	ww sw	Hd H		roughness defect coatings and	Hawkesbury Sandstone Format		
JK 9.02.4 LIB.GLB Log JK CORED BORE			- - - 47 —	8- - - - - - -					1.0	(7.95m) J. 10°, P. S. Clay Vn, Fe, Sn (8.00m) XWS, 0°, 4 mm.t			

CORED BOREHOLE LOG

Borehole No.

2

3 / 3

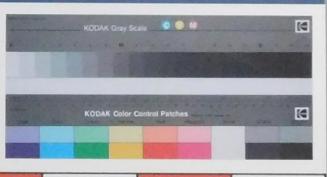
Client: PATHWAYS PROPERTY GROUP

Project: PROPOSED MIXED USED DEVELOPMENT

Location: 274-274A LONGUEVILLE ROAD & 4-18 NORTHWOOD ROAD, LANE COVE, NSW

Job No.: 33311ST Core Size: NMLC R.L. Surface: ~55.9 m

Date: 6/7/20 Inclination: VERTICAL Datum: AHD


Plant Type: JK205 Bearing: N/A Logged/Checked By: A.B./P.S.

Water Loss\Level	Barrel Lift	AHD)	_	D D				CTDENCTI		DEFECT DETAIL		
	Ba	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	STRENGTH INDEX I (50) SPACIN (mm)		DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General		Formation
100% IQ AFTER PUMP OUT RETURN ON 67/20	Ba	E) 12 46	110	Grapt	SANDSTONE: fine to medium grained, orange brown and light grey, bedded sub-horizontally. SANDSTONE: fine to medium grained, light grey, with grey bands and dark grey laminae, bedded sub-horizontally.	FR Weath	Streng	10.04 10		Specific (9.03m) J, 10°, P, S, Fe Sn	d thickness General	Hawkesbury Sandstone Forms
		42	14 —		END OF BOREHOLE AT 14.21 m				060	-		

Job No: 333115T

Borehole No: 2 Depth: 2.87m - 11.00m

BOREHOLE LOG

Borehole No.

1 / 3

Client: PATHWAYS PROPERTY GROUP

Project: PROPOSED MIXED USED DEVELOPMENT

Location: 274-274A LONGUEVILLE ROAD & 4-18 NORTHWOOD ROAD, LANE COVE, NSW

Job No.: 33311ST Method: SPIRAL AUGER R.L. Surface: ~53.7 m

Date: 6/7/20 **Datum**: AHD

P	Plant Type: JK20		: JK205				Log	gged/Checked By: A.B./P.S.			,	
Groundwater	SAMPL 090	LES	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
COMPLETION			N = 15 9,9,6	53 —	- - - 1-		-	CONCRETE: 120mm.t FILL: Gravelly sand, fine to coarse grained, dark grey, fine to medium grained igneous gravel. FILL: Sandy clay, low plasticity, brown and grey, fine to medium grained, with fine to medium grained ironstone and sandstone gravel, trace of slag and ash.	M w~PL			7mm DIA. REINFORCEMENT 55mm TOP COVER APPEARS WELL COMPACTED
JN 801.0 Z010-05-Z0			N = 21 4,12,9	52 — -	2-		CI -	Silty CLAY: medium plasticity, light brown, trace of fine grained sand. Extremely Weathered sandstone: SAND, fine to medium grained, light grey, with ironstone bands.	w>PL XW	St VSt D	170 310	RESIDUAL HAWKESBURY SANDSTONE
OVELGE) US : SQUARMING-1855 240/72020 7231 TUGTOODT UNIQUE LIDE AND TOST-LOST IN DOCUMENT AND TOST-LOST IN STATE A				51 - 50 - 49 - 48 - 48 - 47 - 47 - 47 - 47 - 47 - 47	2 —			SANDSTONE: fine to medium grained, light grey. REFER TO CORED BOREHOLE LOG	DW	M		STRONG HYDROCARBON ODOUR MODERATE 'TC' BIT RESISTANCE
< <p><<p>C-CJR3wingFies> 2407/2020 12:31 10:01:00.00 Datigle Lab and in Situ 10:01-LDC-LLDC-LLDC-LLDC-LLDC-LLDC-LLDC-LLDC</p></p>				50				light grey.	DW	M		HYDROCARBON C MODERATE 'TC' B

COPYRIGHT

CORED BOREHOLE LOG

Borehole No.

2 / 3

Client: PATHWAYS PROPERTY GROUP

Project: PROPOSED MIXED USED DEVELOPMENT

Location: 274-274A LONGUEVILLE ROAD & 4-18 NORTHWOOD ROAD, LANE COVE, NSW

Job No.: 33311ST Core Size: NMLC R.L. Surface: ~53.7 m

Date: 6/7/20 Inclination: VERTICAL Datum: AHD

Plant Type: JK205 Bearing: N/A Logged/Checked By: A.B./P.S.

	ıaıı	ועייו	<i>.</i>	011200	Dearing. N	//				gged/Offecked by. A.B./1 .5.	
		<u> </u>		D _Q	CORE DESCRIPTION	-		POINT LOAD STRENGTH		DEFECT DETAILS DESCRIPTION	
Water Loss\Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	Y	(mm)	Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
		51 —		-	START CORING AT 2.88m						
		50 —	3-		SANDSTONE: fine to medium grained, light grey, bedded sub-horizontally. as above, but with orange brown iron staining.	SW	М	-0.20			Hawkesbury Sandstone
		-	1	- -	NO CORE 0.22m					(107.)	L
100% RFITIRN			5-		SANDSTONE: fine to medium grained, light grey and orange brown, bedded sub-horizontally.	SW	L - M	•0.60 	240	(4.25m) J. 90°, P. S. Cn (4.25m) CS. 0°, 10 mm.t (4.33m) XWS, 0°, 30 mm.t (4.43m) XWS, 0°, 20 mm.t (4.45m) J. 20°, P. S. Cn (4.56m) J. 20°, P. S. Cn	
100% RETIRN		48	6-							—— (5.90m) J, 20°, P, S, Clay Ct	Sandstone
		47	7-					(0.30		(6.80m) XWS, 0°, 1 mm.t (7.25m) J, 20°, P, S, Cn	Hawkesbury Sandstone
מיניטבר בוסטבר ביט מיניסבר ביט מיניסבר וואסבר וואסבר ביט		46	8-		SANDSTONE: fine to medium grained, light grey, with grey bands, dark grey laminae, bedded sub-horizontally.	FR					
		45 –		= - -					- 290	(8.84m) J, 70°, P, R, Fe Sn	

3 / 3

CORED BOREHOLE LOG

Borehole No. 3

Client: PATHWAYS PROPERTY GROUP

Project: PROPOSED MIXED USED DEVELOPMENT

Location: 274-274A LONGUEVILLE ROAD & 4-18 NORTHWOOD ROAD, LANE COVE, NSW

Job No.: 33311ST Core Size: NMLC R.L. Surface: ~53.7 m

Date: 6/7/20 Inclination: VERTICAL Datum: AHD

Plant Type: JK205 Bearing: N/A Logged/Checked By: A.B./P.S.

L				11/200	Dearing. 14/					ogged/onecked by. A.B./1 .O.	
					CORE DESCRIPTION			POINT LOAD		DEFECT DETAILS	
] -	Ę d	RL (m AHD)	ل ـ	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions	ring	_	STRENGTH INDEX	SPACING (mm)	DESCRIPTION Type orientation defect shape and	l lo
Water	Barrel Lift	(m A	Depth (m)	phic	and minor components	Weathering	Strength	ا [«] (20)		Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness	Formation
Wai	Bar	귐	Dep	Gra		We	Stre	VL-0.1 N -1 H -3 VH-10 EH	200000	Specific General	For
		44-	- - - - - - 10 —		SANDSTONE: fine to medium grained, light grey, with grey bands, dark grey laminae, bedded sub-horizontally. (continued)	FR	M	1.1 1.1 1 1 1 1 1 1 1			andstone
8,02.4 2019-05-31 Prj; JK 8,01.0 2018-03-20 100%	RETURN	43	- - - - - 11 — - -				Н	1.0			Hawkesbury Sandstone
tu Tool - DGD LIB: JK 8		42	- - - - 12-							- - - -	
nd in Sit		-	-		END OF BOREHOLE AT 12.03 m					-	
24/07/2020 12:31 10.01.00.01 Datgel Lab a		41	- - - - - - 13 - -								
OVE.GPJ < <drawingfile>></drawingfile>		40	- - - - 14 —							- - - - -	
K 9.024 LBGGB Log JK COKED BOREHOLE - MASTER 33311ST LANECOVE.GFJ - <- CORMINGENO 7231 1001 (0.01 Dagge Lab and in Sin Tool - DGD LDs. JK 9.02.4 2019-05-51 Prj. JK 9.01 0.2014-05-2 10.0%		39-	- - - - - - 15 — -								
		38 –	- - - -						- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	- - - - - - - -	

Job No: 333115T

Borehole No: 3

Depth: 2.88m-11.00m

BOREHOLE LOG

Borehole No.

4

1 / 3

Client: PATHWAYS PROPERTY GROUP

Project: PROPOSED MIXED USED DEVELOPMENT

Location: 274-274A LONGUEVILLE ROAD & 4-18 NORTHWOOD ROAD, LANE COVE, NSW

Job No.: 33311ST Method: SPIRAL AUGER R.L. Surface: ~54.1 m

Date: 8/7/20 **Datum:** AHD

F	Pla	nt T	Гуре	: JK205				Lo	gged/Checked By: B.A./A.B.				
Groundwater	Record 60	SAMP	LES	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
COMPLETION COLARMINGTERS AND 17.23. TUDITUDIT League Lab and in Stall 1004 - DGD LID. AN 9 LLC 4 2019-05-51 Pft LA 801 (1.0.2018-05-20) COMPLETION	OF AUGERING I PECU I	020 020		Field To	(E) 12 54	9 thqqqq	(A) Graphic	Unified Classific	CONCRETE: 65mm.t Extremely Weathered sandstone: silty clayey SAND, fine to medium grained, yellow brown. SANDSTONE: fine to medium grained, yellow brown and orange brown, with extremely weathered seams. SANDSTONE: fine to medium grained, orange brown and red brown, iron indurated. REFER TO CORED BOREHOLE LOG	Moistur S Condition	N Strengt	Hand Penetro Penetro Reading R	NO OBSERVED REINFORCEMENT HAWKESBURY SANDSTONE LOW 'TC' BIT RESISTANCE MODERATE TO HIGH RESISTANCE
JK 9.024 LIBGELB LOG JK AUGENHOLE - MASTEN 33371ST LANECOVE.GFD					48 -	6							- - - - - - - -

COPYRIGHT

CORED BOREHOLE LOG

Borehole No.

4

2 / 3

Client: PATHWAYS PROPERTY GROUP

Project: PROPOSED MIXED USED DEVELOPMENT

Location: 274-274A LONGUEVILLE ROAD & 4-18 NORTHWOOD ROAD, LANE COVE, NSW

Job No.: 33311ST Core Size: NMLC R.L. Surface: ~54.1 m

Date: 8/7/20 Inclination: VERTICAL Datum: AHD

Plant Type: JK205 Bearing: N/A Logged/Checked By: B.A./A.B.

									,
					CORE DESCRIPTION			POINT LOAD	
Water Loss\Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	STRENGTH INDEX I _s (50)	SPACING (mm) DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General
		53 -	- - - -		START CORING AT 1.65m				
		- 52 -	2 - 2 - - -		SANDSTONE: fine to medium grained, light grey, with orange brown iron indurated bands, bedded sub-horizontally.	MW	M - H	1	
		- 51 - -	3-				L-M	•0.20 •0.20 •0.20 •0.20	
-		- 50 —	4 - - - - - -		SANDSTONE: fine to medium grained, red brown and orange brown, iron indurated bedded sub-horizontally.		Н	•0.090 •0.70 	(3.79m) XWS, 0°, 5 mm.t
		49 -	5-		SANDSTONE: fine to medium grained, light grey, with occasional grey bands and carbonaceous laminae, bedded sub-horizontally.		L	•0.20 	
		- - -	- - - -					0.090 	
		48	6 		SANDSTONE: fine to medium grained, red brown and light grey, bedded at 5-10°.		Н	10.30	
		-	- - -						

CORED BOREHOLE LOG

Borehole No.

4

3 / 3

Client: PATHWAYS PROPERTY GROUP

Project: PROPOSED MIXED USED DEVELOPMENT

Location: 274-274A LONGUEVILLE ROAD & 4-18 NORTHWOOD ROAD, LANE COVE, NSW

Job No.: 33311ST Core Size: NMLC R.L. Surface: ~54.1 m

Date: 8/7/20 Inclination: VERTICAL Datum: AHD

Plant Type: JK205 Bearing: N/A Logged/Checked By: B.A./A.B.

					CORE DESCRIPTION			POINT LOAD		DEFECT DETAILS	
Water Loss\Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	trength	STRENGTH INDEX I _s (50)	SPACING (mm)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness	[]
IN SUZA LIBIGEB LOG IN CONEU BONCHOLE - MANA LEX SSSTIST LANECOVE.GF7 - <- CHRANINGTON 12/20 TOUT MUT DAIGHT LANE BONCHOLE - MANA LEX SSTIST LANECOVE GF7 - <- CHRANINGTON 12/20 TOUT MUT DAIGHT LANE BONCHOLE - MANA LEX SSTIST LANECOVE GF7 - <- CHRANINGTON 12/20 TOUT MUT DAIGHT LANE BONCHOLE - MANA LEX SSTIST LANECOVE GF7 - <- CHRANINGTON 12/20 TOUT MUT DAIGHT LANE BONCHOLE - MANA LEX SSTIST LANECOVE GF7 - <- CHRANINGTON 12/20 TOUT MUT DAIGHT LANE BONCHOLE - MANA LEX SSTIST LANECOVE GF7 - <- CHRANINGTON 12/20 TOUT MUT DAIGHT LANE BONCHOLE - MANA LEX SSTIST LANECOVE GF7 - <- CHRANINGTON 12/20 TOUT MUT DAIGHT LANE BONCHOLE - MANA LEX SSTIST LANECOVE GF7 - <- CHRANINGTON 12/20 TOUT MUT DAIGHT LANE BONCHOLE - MANA LEX SSTIST LANECOVE GF7 - <- CHRANINGTON 12/20 TOUT MUT DAIGHT LANE BONCHOLE - MANA LEX SSTIST LANE BONCHOLE - M	Barrel Li	Y E) 72 46	S	Graphic		Weather Weather	Strength Strength	I ₀ (50)	' '	seams, openness and thickness	la l
9.024 LIB:GLB Log JK L		-	- - - - -						290		
COP'	<u></u>	ICLIT				ED A OT	IDEO 1	IOT MADKES:		FRED TO BE DRILLING AND HANDL	

BOREHOLE LOG

Borehole No.

5

1 / 3

Client: PATHWAYS PROPERTY GROUP

Project: PROPOSED MIXED USED DEVELOPMENT

Location: 274-274A LONGUEVILLE ROAD & 4-18 NORTHWOOD ROAD, LANE COVE, NSW

Job No.: 33311ST Method: SPIRAL AUGER R.L. Surface: ~52.3 m

Date: 2/7/20 **Datum**: AHD

P	Plant Type: JK20		: JK205				Lo	gged/Checked By: S.D./A.B.					
Groundwater	SAM CO20	IPLE BQ	SO	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION				N > 12	- 52 –	-		- SC	ASPHALTIC CONCRETE: 90mm.t FILL: Silty gravelly sand, fine to medium grained, dark grey, with fine to medium grained igneous gravel. Silty clayey SAND: fine to medium	M	(L)		- RESIDUAL
				N > 12 2,9,3/ 4mm REFUSAL	51 - 50	1—			Silty clayey SAND: fine to medium grained, grey brown, trace of ash and root fibres. Extremely Weathered sandstone: SAND: fine to medium grained, light grey and orange brown. SANDSTONE: fine to medium grained, orange brown. REFER TO CORED BOREHOLE LOG	XW DW /	(D) M-H/		HAWKESBURY SANDSTONE
						5 —							
					-	=							

COPYRIGHT

CORED BOREHOLE LOG

Borehole No. 5

2 / 3

Client: PATHWAYS PROPERTY GROUP

Project: PROPOSED MIXED USED DEVELOPMENT

Location: 274-274A LONGUEVILLE ROAD & 4-18 NORTHWOOD ROAD, LANE COVE, NSW

Job No.: 33311ST Core Size: NMLC R.L. Surface: ~52.3 m

Inclination: VERTICAL **Date:** 2/7/20 Datum: AHD

P	lan	t Typ	e: .	JK205	Bearing: N	/A			Logged/Checked By: S.D./A.B.	
Water Loss\Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	CORE DESCRIPTION Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	POINT LOAD STRENGTH INDEX I _s (50)	SPACING DESCRIPTION (mm) Type, orientation, defect shape and roughness, defect coatings and	Formation
Thus an exact acceptor and the compact of the compa		52 - 51 - 51 - 50 - 50 - 50 - 50 - 50 - 50	1	Gra	START CORING AT 0.84m SANDSTONE: fine to medium grained, orange brown and light grey, bedded sub-horizontally. as above, but light grey, with grey bands.	SW FR	M - H		Specific General	For
3331131 ENRECCO ECOTO SCHARINGFIRES FROM 2020 TOUR TOUR TOUR TOUR TOUR TOUR TOUR TOUR		49	3		SANDSTONE: fine to medium grained, grey, with grey bands, bedded at 20°. Extremely Weathered sandstone: silty clayey SAND, fine to medium grained, light grey and orange brown. SANDSTONE: fine to medium grained, light grey, with grey bands, bedded at 20-40°. as above, but bedded at 0-20°.	sw xw sw	(D)	9.50 9.50 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.		Hawkesbury Sandstone
יא איטביד נוסיטנים ניטן את עטרפט סטמפחטבב - יייאט דמ		46 -	6		Extremely Weathered sandstone: silty clayey SAND, fine to medium grained, light grey. SANDSTONE: fine to medium grained, light grey, bedded sub-horizontally, with grey bands and occasional carbonaceous laminae.	XW SW	(D)	0.20	(5.55m) Be, 10°, P, R, Fe Sn (5.63m) XWS, 0°, 5 mm.t (5.95m) Fragmented Zone, 10 mm.t (6.20m) XWS, 0°, 20 mm.t (6.47m) XWS, 10°, 50 mm.t (6.50m) XWS, 0°, 20 mm.t (6.58m) XWS, 0°, 20 mm.t	

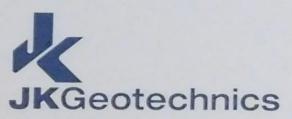
CORED BOREHOLE LOG

Borehole No. 5

3 / 3

Client: PATHWAYS PROPERTY GROUP

Project: PROPOSED MIXED USED DEVELOPMENT

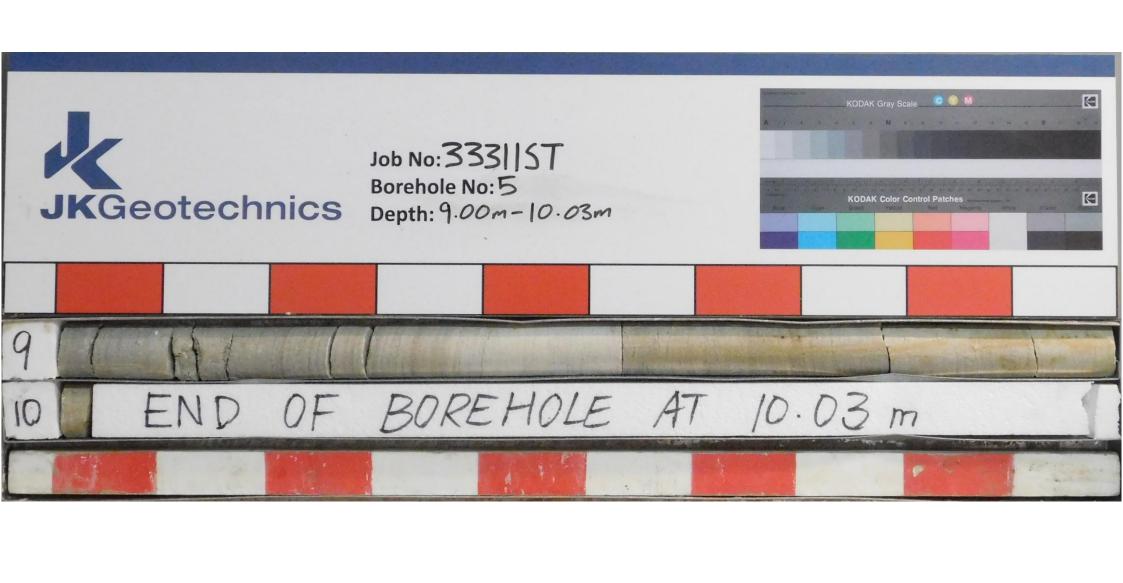

Location: 274-274A LONGUEVILLE ROAD & 4-18 NORTHWOOD ROAD, LANE COVE, NSW

Job No.: 33311ST Core Size: NMLC R.L. Surface: ~52.3 m

Date: 2/7/20 Inclination: VERTICAL Datum: AHD

Plant Type: JK205 Bearing: N/A Logged/Checked By: S.D./A.B.

						CORE DESCRIPTION			POINT LOAD		DEFECT DETAILS	
Water	_oss\Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	STRENGTH INDEX I _s (50) I _s (50)	SPACING (mm)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific Gener	<u>vi</u> Formation
	RETURN		45	8	0	SANDSTONE: fine to medium grained, light grey, bedded sub-horizontally, with grey bands and occasional carbonaceous laminae. (continued)	FR	M	0.40		Gener	Hawkesbury Sandstone
d in Situ Tool			-			END OF BOREHOLE AT 10.03 m					-	
M \$ 9.0.2.4 LIB GLB Log JK CORED BOREHOLE - MASTER 33311ST LANECOVE GPJ <-ChawingFle> 24/07/2020 12:32 10.01.00.01 Datgel Lab and in Situ Tool - DGD Lib. JK 9.02.4 2019-05:31 Prj. JK 9.01.0.2018-03:30			42	11-								
REHOLE - MASTER 33311ST LANECOVE.GPJ <			40 -	12— 12— - - - - - 13—							- - - - - - - - - -	
			39 - - -	13						- 240		


Job No: 333115T

Borehole No: 5

Depth: 0.84m-9.00m

BOREHOLE LOG

COPYRIGHT

Borehole No.

6

1 / 3

Client: PATHWAYS PROPERTY GROUP

Project: PROPOSED MIXED USED DEVELOPMENT

Location: 274-274A LONGUEVILLE ROAD & 4-18 NORTHWOOD ROAD, LANE COVE, NSW

Job No.: 33311ST Method: SPIRAL AUGER R.L. Surface: ~51.1 m

Date: 2/7/20 **Datum**: AHD

P	lant	t Ty	pe: JK	205			Lo	gged/Checked By: S.D./A.B.			,	
Groundwater	SAM	MPLES	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
AN SOLICIO DE LOS DEL LOS DE LOS DEL LOS DE LOS DEL LOS DE LOS DEL LOS DEL LOS DEL LOS DEL LOS DEL LOS DELLA DEL			N = 1,2,4		5		SP	CONCRETE: 60mm.t VOID: 50mm.t Silty clayey SAND: fine to medium grained, grey brown, trace of fine to medium grained ironstone gravel, ash and root fibres. SAND: fine to medium grained, light grey, brown and orange brown, with fine to medium grained sandstone gravel. SANDSTONE: fine to medium grained, light grey and orange brown, with extremely weathered bands. REFER TO CORED BOREHOLE LOG	M DW	M		RESIDUAL NO SAMPLE RETURN FROM AUGER HAWKESBURY SANDSTONE VERY LOW 'TC' BIT RESISTANCE MODERATE RESISTANCE

CORED BOREHOLE LOG

Borehole No.

6

2 / 3

Client: PATHWAYS PROPERTY GROUP

Project: PROPOSED MIXED USED DEVELOPMENT

Location: 274-274A LONGUEVILLE ROAD & 4-18 NORTHWOOD ROAD, LANE COVE, NSW

Job No.: 33311ST Core Size: NMLC R.L. Surface: ~51.1 m

Date: 2/7/20 Inclination: VERTICAL Datum: AHD

Plant Type: JK205 Bearing: N/A Logged/Checked By: S.D./A.B.

	_FI	Tant Type: JK205				Bearing: N	_			Logged/Checked By: 5.D./A.b.
Ī						CORE DESCRIPTION			POINT LOAD	
10/-4-1	vvater Loss\Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	STRENGTH INDEX Is(50)	(mm) Type, orientation, defect shape and
			50 -		-	START CORING AT 1.33m				
02	0% RETURN		- - - 49 -	2-		SANDSTONE: fine to medium grained, light grey, bedded at 0-10°, with occasional shale lenses.	SW	М		(1.48m) Be, 10°, P, R, Sand FILLED, 1 mm.t ——————————————————————————————————
1.01.0 2018-03-2			-		_	¬ as above,	_		•0.40	(2.45m) XWS, 15°, 10 mm.t
33311ST LANECOVE.GPJ < <drawingfile>> 2407/2020 12:32 10.01.00.01 Datget Lab and in Situ Tool - DGD Lib. JK 9.02.4.2019-05-31 Prj. JK 9.01.0.2018-03-39</drawingfile>	100% RETURN	48	3-4-5-		but with orange brown iron staining. NO CORE 0.05m SANDSTONE: fine to medium grained, light grey, bedded at 0-10°, with occasional carbonaceous laminae and orange brown staining. SANDSTONE: fine to medium grained, light grey, with grey bands, bedded sub-horizontally.	SW	M	0.30		
JK 9.02.4 LIB.GLB Log JK CORED BOREHOLE - MASTER 33311STLANECOVE.GPJ < <drawing< td=""><td></td><td> 45 44</td><td>6 -</td><td></td><td></td><td></td><td></td><td>-0.40 </td><td>(5.92m) Be, 20°, P, R, Cn (5.99m) XWS, 0°, 20 mm.t (6.29m) J, 20°, P, R, Fe Sn (6.37m) Be, 10°, P, R, Sand FILLED, 5 mm.t (6.41m) J, 20°, P, R, Fe Sn (6.61m) J, 20°, P, R, Fe Sn (6.70m) J, 50°, P, R, Fe Sn (6.73m) J, 15°, P, R, Fe Sn (6.95m) Be, 0°, C, R, Fe Sn (6.95m) Be, 0°, C, R, Fe Sn (7.10m) Be, 0°, C, R, Fe Sn (7.10m) Be, 0°, P, R, Fe Sn (7.14m) Be, 0°, P, R, Fe Sn</td></drawing<>			 45 44	6 -					-0.40 	(5.92m) Be, 20°, P, R, Cn (5.99m) XWS, 0°, 20 mm.t (6.29m) J, 20°, P, R, Fe Sn (6.37m) Be, 10°, P, R, Sand FILLED, 5 mm.t (6.41m) J, 20°, P, R, Fe Sn (6.61m) J, 20°, P, R, Fe Sn (6.70m) J, 50°, P, R, Fe Sn (6.73m) J, 15°, P, R, Fe Sn (6.95m) Be, 0°, C, R, Fe Sn (6.95m) Be, 0°, C, R, Fe Sn (7.10m) Be, 0°, C, R, Fe Sn (7.10m) Be, 0°, P, R, Fe Sn (7.14m) Be, 0°, P, R, Fe Sn
IK 9.02.4 LIB.GLB Lo			-		- - - -	NO CORE 0.09m SANDSTONE: fine to medium grained, light grey, bedded at 0-20°, with occasional carbonaceous laminae.	FR	М	-0.60	(7.17m) J. 0°, P. R. XW FILLED (7.30m) XWS, 0°, 10 mm.t — (7.36m) XWS, 0°, 30 mm.t (7.56m) XWS, 20°, 40 mm.t — (7.75m) Be, 10°, P. S. Clay Vn
7	'OD	VDI	GHT				ERACTI	IRES N	IOT MARKED	ARE CONSIDERED TO BE DRILLING AND HANDLING BREA

CORED BOREHOLE LOG

Borehole No.

6

3 / 3

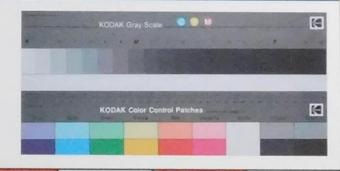
Client: PATHWAYS PROPERTY GROUP

Project: PROPOSED MIXED USED DEVELOPMENT

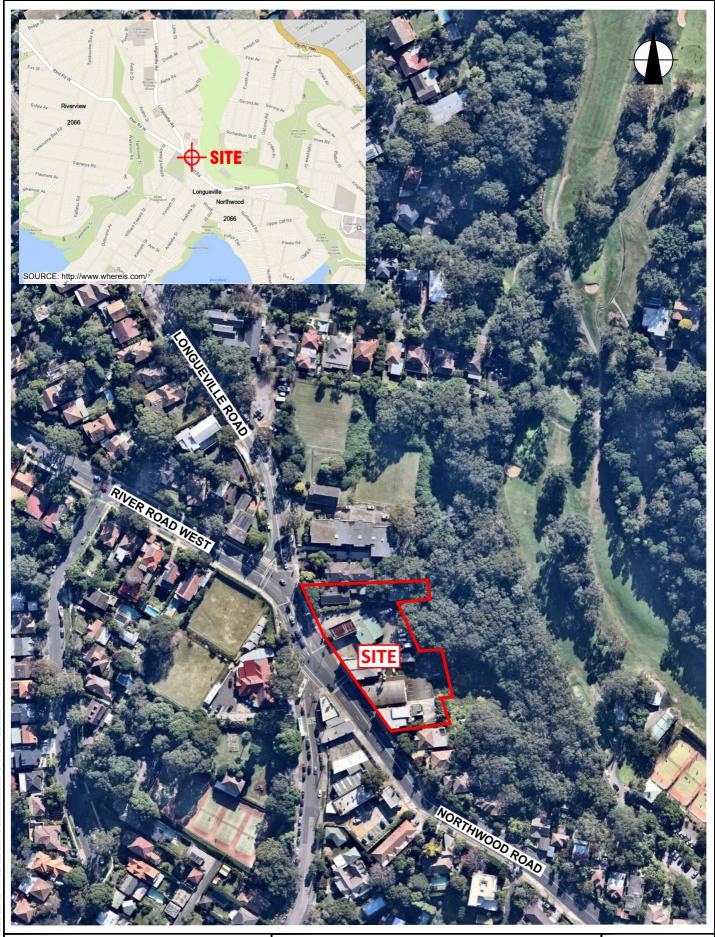
Location: 274-274A LONGUEVILLE ROAD & 4-18 NORTHWOOD ROAD, LANE COVE, NSW

Job No.: 33311ST Core Size: NMLC R.L. Surface: ~51.1 m

Date: 2/7/20 Inclination: VERTICAL Datum: AHD


Plant Type: JK205 Bearing: N/A Logged/Checked By: S.D./A.B.

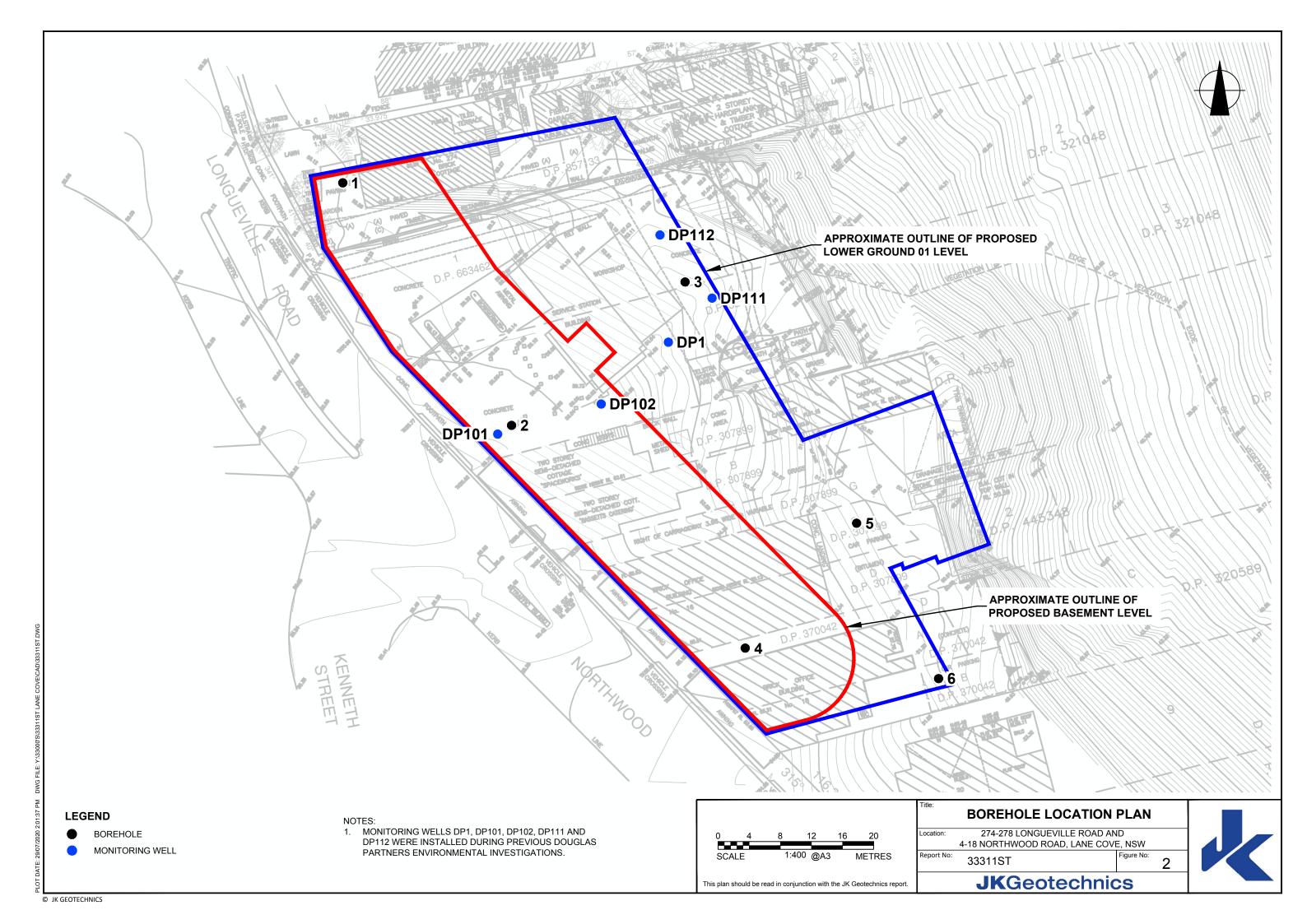
										990	
					CORE DESCRIPTION			POINT LOAD		DEFECT DETAILS	. I
 	_	Q Q		Graphic Log	Rock Type, grain characteristics, colour,	рu		STRENGTH INDEX	SPACING	DESCRIPTION	_
Water Loss\Level	Barrel Lift	RL (m AHD)	Depth (m)	lic L	texture and fabric, features, inclusions	Weathering	Strength	I _s (50)	(mm)	Type, orientation, defect shape and roughness, defect coatings and	Formation
ater ss/l	rre	E) .	pth	aph	and minor components	eath	eu Ĝ	M -0.3 M -1 H -3 VH-3 EH 10		seams, openness and thickness	🖺
دُ ﴿	Ba	집	Ď	Ö		Š	l st	ਖ਼, ¬, ≊, ≖, ≩, ⊞	2 8 8	Specific General	유
33311ST LANECOVE GFJ <=CyramigFile> 244072020 12:32 1001.03.01 Datigat Lab and in Situ Tool - DGD List JK 8022.4.2019-05-31 Prj; JK 9010 3019-05-20 1000%		43-	9		SANDSTONE: fine to medium grained, light grey, bedded at 0-20°, with occasional carbonaceous laminae. (continued)	FR	M	0.30		(8.10m) XWS, 0°, 10 mm.t (8.71m) XWS, 5°, 3 mm.t (8.73m) XWS, 0°, 3 mm.t (8.81m) XWS, 0°, 20 mm.t	Hawkesbury Sandstone
0.20.c			-		END OF BOREHOLE AT 9.56 m				<u> </u>		
K 9.01.			-								
L H		-	10 -	1							
9-05-3		41 -	-	}					! ! ! !		
2.4 201		-	-	-							
JK 9.0		-	-]					l i i i i F		
ä o		_	-								
- DG			-								
Sifu Too			11 —								
and In S		40 –	_								
el Lab		-	-								
1 Datg		-	-	-					99 7 9		
0.00.0		-	-]							
200		_	_								
120 120		39 –	12 -								
24/07/2			-								
			-								
rawingh		_	-]							
\$		-	-								
VE.GP		-	- 13 -	<u> </u> 							
ANECO		38 -	-								
1ST LV		_	-]					i i i i [
333		_	-								
MASTE			-								
OLE - I			-								
SOREH			14 —								
JK 9.02.4 LIB/GLB Log JK CORED BOREHOLE - MASTER		37 -	_								
A C		-	-								
LO B		-	-								
t LIB.G		-	-								
4 9.02.		-	-						8888		
* L	1				<u> </u>			OT MADICED A	A DE CONOID		\perp



Job No: 333115T

Borehole No: 6 Depth: 1.33m-9.56m

AERIAL IMAGE SOURCE: MAPS.AU.NEARMAP.COM


SITE LOCATION PLAN

Location: 274-278 LONGUEVILLE ROAD AND

4-18 NORTHWOOD ROAD, LANE COVE, NSW
Report No: 33311ST Figure No.

JKGeotechnics

VIBRATION EMISSION DESIGN GOALS

German Standard DIN 4150 – Part 3: 1999 provides guideline levels of vibration velocity for evaluating the effects of vibration in structures. The limits presented in this standard are generally recognised to be conservative.

The DIN 4150 values (maximum levels measured in any direction at the foundation, OR, maximum levels measured in (x) or (y) horizontal directions, in the plane of the uppermost floor), are summarised in Table 1 below.

It should be noted that peak vibration velocities higher than the minimum figures in Table 1 for low frequencies may be quite 'safe', depending on the frequency content of the vibration and the actual condition of the structure.

It should also be noted that these levels are 'safe limits', up to which no damage due to vibration effects has been observed for the particular class of building. 'Damage' is defined by DIN 4150 to include even minor non-structural effects such as superficial cracking in cement render, the enlargement of cracks already present, and the separation of partitions or intermediate walls from load bearing walls. Should damage be observed at vibration levels lower than the 'safe limits', then it may be attributed to other causes. DIN 4150 also states that when vibration levels higher than the 'safe limits' are present, it does not necessarily follow that damage will occur. Values given are only a broad guide.

Table 1: DIN 4150 – Structural Damage – Safe Limits for Building Vibration

		Peak Vibration Velocity in mm/s					
Group	Type of Structure	,	Plane of Floor of Uppermost Storey				
		Less than 10Hz	10Hz to 50Hz	50Hz to 100Hz	All Frequencies		
1	Buildings used for commercial purposes, industrial buildings and buildings of similar design.	20	20 to 40	40 to 50	40		
2	Dwellings and buildings of similar design and/or use.	5	5 to 15	15 to 20	15		
3	Structures that because of their particular sensitivity to vibration, do not correspond to those listed in Group 1 and 2 and have intrinsic value (eg. buildings that are under a preservation order).	3	3 to 8	8 to 10	8		

Note: For frequencies above 100Hz, the higher values in the 50Hz to 100Hz column should be used.

REPORT EXPLANATION NOTES

INTRODUCTION

These notes have been provided to amplify the geotechnical report in regard to classification methods, field procedures and certain matters relating to the Comments and Recommendations section. Not all notes are necessarily relevant to all reports.

The ground is a product of continuing natural and man-made processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Geotechnical engineering involves gathering and assimilating limited facts about these characteristics and properties in order to understand or predict the behaviour of the ground on a particular site under certain conditions. This report may contain such facts obtained by inspection, excavation, probing, sampling, testing or other means of investigation. If so, they are directly relevant only to the ground at the place where and time when the investigation was carried out.

DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726:2017 *'Geotechnical Site Investigations'*. In general, descriptions cover the following properties – soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geotechnical practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached soil classification table qualified by the grading of other particles present (eg. sandy clay) as set out below:

Soil Classification	Particle Size
Clay	< 0.002mm
Silt	0.002 to 0.075mm
Sand	0.075 to 2.36mm
Gravel	2.36 to 63mm
Cobbles	63 to 200mm
Boulders	> 200mm

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

Relative Density	SPT 'N' Value (blows/300mm)
Very loose (VL)	< 4
Loose (L)	4 to 10
Medium dense (MD)	10 to 30
Dense (D)	30 to 50
Very Dense (VD)	>50

Cohesive soils are classified on the basis of strength (consistency) either by use of a hand penetrometer, vane shear, laboratory testing and/or tactile engineering examination. The strength terms are defined as follows.

Classification	Unconfined Compressive Strength (kPa)	Indicative Undrained Shear Strength (kPa)
Very Soft (VS)	≤25	≤ 12
Soft (S)	> 25 and ≤ 50	> 12 and ≤ 25
Firm (F)	> 50 and ≤ 100	> 25 and ≤ 50
Stiff (St)	> 100 and ≤ 200	> 50 and ≤ 100
Very Stiff (VSt)	> 200 and ≤ 400	> 100 and ≤ 200
Hard (Hd)	> 400	> 200
Friable (Fr)	Strength not attainable – soil crumbles	

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'shale' is used to describe fissile mudstone, with a weakness parallel to bedding. Rocks with alternating inter-laminations of different grain size (eg. siltstone/claystone and siltstone/fine grained sandstone) is referred to as 'laminite'.

SAMPLING

Sampling is carried out during drilling or from other excavations to allow engineering examination (and laboratory testing where required) of the soil or rock.

Disturbed samples taken during drilling provide information on plasticity, grain size, colour, moisture content, minor constituents and, depending upon the degree of disturbance, some information on strength and structure. Bulk samples are similar but of greater volume required for some test procedures.

Undisturbed samples are taken by pushing a thin-walled sample tube, usually 50mm diameter (known as a U50), into the soil and withdrawing it with a sample of the soil contained in a relatively undisturbed state. Such samples yield information on structure and strength, and are necessary for laboratory determination of shrinkswell behaviour, strength and compressibility. Undisturbed sampling is generally effective only in cohesive soils.

Details of the type and method of sampling used are given on the attached logs.

INVESTIGATION METHODS

The following is a brief summary of investigation methods currently adopted by the Company and some comments on their use and application. All methods except test pits, hand auger drilling and portable Dynamic Cone Penetrometers require the use of a mechanical rig which is commonly mounted on a truck chassis or track base.

Test Pits: These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the insitu soils and 'weaker' bedrock if it is safe to descend into the pit. The depth of penetration is limited to about 3m for a backhoe and up to 6m for a large excavator. Limitations of test pits are the problems associated with disturbance and difficulty of reinstatement and the consequent effects on close-by structures. Care must be taken if construction is to be carried out near test pit locations to either properly recompact the backfill during construction or to design and construct the structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Refusal of the hand auger can occur on a variety of materials such as obstructions within any fill, tree roots, hard clay, gravel or ironstone, cobbles and boulders, and does not necessarily indicate rock level.

Continuous Spiral Flight Augers: The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and insitu testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of limited reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

Rock Augering: Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock cuttings. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

Wash Boring: The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be assessed from the cuttings, together with some information from "feel" and rate of penetration.

Mud Stabilised Drilling: Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (eg. from SPT and U50 samples) or from rock coring, etc.

Continuous Core Drilling: A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, NMLC or HQ triple tube core barrels, which give a core of about 50mm and 61mm diameter, respectively, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as NO CORE. The location of NO CORE recovery is determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the bottom of the drill run.

Standard Penetration Tests: Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils, as a means of indicating density or strength and also of obtaining a relatively undisturbed sample. The test procedure is described in Australian Standard 1289.6.3.1–2004 (R2016) 'Methods of Testing Soils for Engineering Purposes, Soil Strength and Consolidation Tests – Determination of the Penetration Resistance of a Soil – Standard Penetration Test (SPT)'.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63.5kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

 In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as

> N = 13 4, 6, 7

 In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as

> N > 30 15, 30/40mm

The results of the test can be related empirically to the engineering properties of the soil.

A modification to the SPT is where the same driving system is used with a solid 60° tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as 'Nc' on the borehole logs, together with the number of blows per 150mm penetration.

Cone Penetrometer Testing (CPT) and Interpretation: The cone penetrometer is sometimes referred to as a Dutch Cone. The test is described in Australian Standard 1289.6.5.1–1999 (R2013) 'Methods of Testing Soils for Engineering Purposes, Soil Strength and Consolidation Tests – Determination of the Static Cone Penetration Resistance of a Soil – Field Test using a Mechanical and Electrical Cone or Friction-Cone Penetrometer'.

In the tests, a 35mm or 44mm diameter rod with a conical tip is pushed continuously into the soil, the reaction being provided by a specially designed truck or rig which is fitted with a hydraulic ram system. Measurements are made of the end bearing resistance on the cone and the frictional resistance on a separate 134mm or 165mm long sleeve, immediately behind the cone. Transducers in the tip of the assembly are electrically connected by wires passing through the centre of the push rods to an amplifier and recorder unit mounted on the control truck. The CPT does not provide soil sample recovery.

As penetration occurs (at a rate of approximately 20mm per second), the information is output as incremental digital records every 10mm. The results given in this report have been plotted from the digital data.

The information provided on the charts comprise:

- Cone resistance the actual end bearing force divided by the cross sectional area of the cone – expressed in MPa. There are two scales presented for the cone resistance. The lower scale has a range of 0 to 5MPa and the main scale has a range of 0 to 50MPa. For cone resistance values less than 5MPa, the plot will appear on both scales.
- Sleeve friction the frictional force on the sleeve divided by the surface area – expressed in kPa.
- Friction ratio the ratio of sleeve friction to cone resistance, expressed as a percentage.

The ratios of the sleeve resistance to cone resistance will vary with the type of soil encountered, with higher relative friction in clays than in sands. Friction ratios of 1% to 2% are commonly encountered in sands and occasionally very soft clays, rising to 4% to 10% in stiff clays and peats. Soil descriptions based on cone resistance and friction ratios are only inferred and must not be considered as exact.

Correlations between CPT and SPT values can be developed for both sands and clays but may be site specific.

Interpretation of CPT values can be made to empirically derive modulus or compressibility values to allow calculation of foundation settlements.

Stratification can be inferred from the cone and friction traces and from experience and information from nearby boreholes etc. Where shown, this information is presented for general guidance, but must be regarded as interpretive. The test method provides a continuous profile of engineering properties but, where precise information on soil classification is required, direct drilling and sampling may be preferable.

There are limitations when using the CPT in that it may not penetrate obstructions within any fill, thick layers of hard clay and very dense sand, gravel and weathered bedrock. Normally a 'dummy' cone is pushed through fill to protect the equipment. No information is recorded by the 'dummy' probe.

Flat Dilatometer Test: The flat dilatometer (DMT), also known as the Marchetti Dilometer comprises a stainless steel blade having a flat, circular steel membrane mounted flush on one side.

The blade is connected to a control unit at ground surface by a pneumatic-electrical tube running through the insertion rods. A gas tank, connected to the control unit by a pneumatic cable, supplies the gas pressure required to expand the membrane. The control unit is equipped with a pressure regulator, pressure gauges, an audiovisual signal and vent valves.

The blade is advanced into the ground using our CPT rig or one of our drilling rigs, and can be driven into the ground using an SPT hammer. As soon as the blade is in place, the membrane is inflated, and the pressure required to lift the membrane (approximately 0.1mm) is recorded. The pressure then required to lift the centre of the membrane by an additional 1mm is recorded. The membrane is then deflated before pushing to the next depth increment, usually 200mm down. The pressure readings are corrected for membrane stiffness.

The DMT is used to measure material index (I_D), horizontal stress index (K_D), and dilatometer modulus (E_D). Using established correlations, the DMT results can also be used to assess the 'at rest' earth pressure coefficient (K_D), over-consolidation ratio (OCR), undrained shear strength (C_U), friction angle (ϕ), coefficient of consolidation (C_h), coefficient of permeability (K_h), unit weight (γ), and vertical drained constrained modulus (M).

The seismic dilatometer (SDMT) is the combination of the DMT with an add-on seismic module for the measurement of shear wave velocity (V_s). Using established correlations, the SDMT results can also be used to assess the small strain modulus (G_o).

Portable Dynamic Cone Penetrometers: Portable Dynamic Cone Penetrometer (DCP) tests are carried out by driving a 16mm diameter rod with a 20mm diameter cone end with a 9kg hammer dropping 510mm. The test is described in Australian Standard 1289.6.3.2–1997 (R2013) 'Methods of Testing Soils for Engineering Purposes, Soil Strength and Consolidation Tests – Determination of the Penetration Resistance of a Soil – 9kg Dynamic Cone Penetrometer Test'.

The results are used to assess the relative compaction of fill, the relative density of granular soils, and the strength of cohesive soils. Using established correlations, the DCP test results can also be used to assess California Bearing Ratio (CBR).

Refusal of the DCP can occur on a variety of materials such as obstructions within any fill, tree roots, hard clay, gravel or ironstone, cobbles and boulders, and does not necessarily indicate rock level.

Vane Shear Test: The vane shear test is used to measure the undrained shear strength (C_u) of typically very soft to firm fine grained cohesive soils. The vane shear is normally performed in the bottom of a borehole, but can be completed from surface level, the bottom and sides of test pits, and on recovered undisturbed tube samples (when using a hand vane).

The vane comprises four rectangular blades arranged in the form of a cross on the end of a thin rod, which is coupled to the bottom of a drill rod string when used in a borehole. The size of the vane is dependent on the strength of the fine grained cohesive soils; that is, larger vanes are normally used for very low strength soils. For borehole testing, the size of the vane can be limited by the size of the casing that is used.

For testing inside a borehole, a device is used at the top of the casing, which suspends the vane and rods so that they do not sink under self-weight into the 'soft' soils beyond the depth at which the test is to be carried out. A calibrated torque head is used to rotate the rods and vane and to measure the resistance of the vane to rotation.

With the vane in position, torque is applied to cause rotation of the vane at a constant rate. A rate of 6° per minute is the common rotation rate. Rotation is continued until the soil is sheared and the maximum torque has been recorded. This value is then used to calculate the undrained shear strength. The vane is then rotated rapidly a number of times and the operation repeated until a constant torque reading is obtained. This torque value is used to calculate the remoulded shear strength. Where appropriate, friction on the vane rods is measured and taken into account in the shear strength calculation.

LOGS

The borehole or test pit logs presented herein are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The terms and symbols used in preparation of the logs are defined in the following pages.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than 'straight line' variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.

GROUNDWATER

Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction.
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if reliable water observations are to be made.

More reliable measurements can be made by installing standpipes which are read after the groundwater level has stabilised at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (eg. bricks, steel, etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably assess the extent of the fill.

The presence of fill materials is usually regarded with caution as the possible variation in density, strength and material type is much greater than with natural soil deposits. Consequently, there is an increased risk of adverse engineering characteristics or behaviour. If the volume and quality of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes.

LABORATORY TESTING

Laboratory testing is normally carried out in accordance with Australian Standard 1289 'Methods of Testing Soils for Engineering Purposes' or appropriate NSW Government Roads & Maritime Services (RMS) test methods. Details of the test procedure used are given on the individual report forms.

ENGINEERING REPORTS

Engineering reports are prepared by qualified personnel and are based on the information obtained and on current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal (eg. a three storey building) the information and interpretation may not be relevant if the design proposal is changed (eg. to a twenty storey building). If this happens, the Company will be pleased to review the report and the sufficiency of the investigation work.

Reasonable care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical aspects and recommendations or suggestions for design and construction. However, the Company cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions the potential for this will be partially dependent on borehole spacing and sampling frequency as well as investigation technique.
- Changes in policy or interpretation of policy by statutory authorities.
- The actions of persons or contractors responding to commercial pressures.
- Details of the development that the Company could not reasonably be expected to anticipate.

If these occur, the Company will be pleased to assist with investigation or advice to resolve any problems occurring.

SITE ANOMALIES

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, the Company requests that it immediately be notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

REPRODUCTION OF INFORMATION FOR CONTRACTUAL PURPOSES

Where information obtained from this investigation is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. The Company would

be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Copyright in all documents (such as drawings, borehole or test pit logs, reports and specifications) provided by the Company shall remain the property of Jeffery and Katauskas Pty Ltd. Subject to the payment of all fees due, the Client alone shall have a licence to use the documents provided for the sole purpose of completing the project to which they relate. Licence to use the documents may be revoked without notice if the Client is in breach of any obligation to make a payment to us.

REVIEW OF DESIGN

Where major civil or structural developments are proposed <u>or</u> where only a limited investigation has been completed <u>or</u> where the geotechnical conditions/constraints are quite complex, it is prudent to have a joint design review which involves an experienced geotechnical engineer/engineering geologist.

SITE INSPECTION

The Company will always be pleased to provide engineering inspection services for geotechnical aspects of work to which this report is related.

Requirements could range from:

- a site visit to confirm that conditions exposed are no worse than those interpreted, to
- a visit to assist the contractor or other site personnel in identifying various soil/rock types and appropriate footing or pile founding depths, or
- iii) full time engineering presence on site.

SYMBOL LEGENDS

SOIL ROCK FILL CONGLOMERATE TOPSOIL SANDSTONE CLAY (CL, CI, CH) SHALE/MUDSTONE SILT (ML, MH) SILTSTONE SAND (SP, SW) CLAYSTONE GRAVEL (GP, GW) COAL SANDY CLAY (CL, CI, CH) LAMINITE SILTY CLAY (CL, CI, CH) LIMESTONE CLAYEY SAND (SC) PHYLLITE, SCHIST SILTY SAND (SM) TUFF GRAVELLY CLAY (CL, CI, CH) GRANITE, GABBRO CLAYEY GRAVEL (GC) DOLERITE, DIORITE SANDY SILT (ML, MH) BASALT, ANDESITE 77 77 77 7 77 77 77 77 77

OTHER MATERIALS

PEAT AND HIGHLY ORGANIC SOILS (Pt)

ASPHALTIC CONCRETE

QUARTZITE

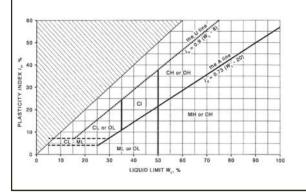
CLASSIFICATION OF COARSE AND FINE GRAINED SOILS

Ma	Major Divisions		Typical Names	Field Classification of Sand and Gravel	Laboratory Cl	assification
ianis	GRAVEL (more than half		Gravel and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	C _u >4 1 <c<sub>c<3</c<sub>
rsize fract	of coarse fraction is larger than 2.36mm	GP	Gravel and gravel-sand mixtures, little or no fines, uniform gravels	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above
uding ove		GM	Gravel-silt mixtures and gravel- sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	Fines behave as silt
Coarse grained soil (more than 65% of soil excluding oversize fraction is greater than 0,075mm)		GC	Gravel-clay mixtures and gravel- sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	Fines behave as clay
than 65% eater thar	SAND (more than half		Sand and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	C _u >6 1 <c<sub>c<3</c<sub>
iai (mare	of coarse fraction is smaller than	SP	Sand and gravel-sand mixtures, little or no fines	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above
spa2.36n	2.36mm)	SM	Sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	
Coars	Совгуе		Sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	N/A

		Group	Group		Field Classification of Silt and Clay			
Majo	Major Divisions		Typical Names	Dry Strength	Dilatancy	Toughness	% < 0.075mm	
exduding mm)	SILT and CLAY (low to medium	ML	Inorganic silt and very fine sand, rock flour, silty or clayey fine sand or silt with low plasticity	None to low	Slow to rapid	Low	Below A line	
ainedsoils (more than 35% of soil excl. oversize fraction is less than 0.075mm)	plasticity)	ticity)	Inorganic clay of low to medium plasticity, gravelly clay, sandy clay	Medium to high	None to slow	Medium	Above A line	
an 35% sethan		OL	Organic silt	Low to medium	Slow	Low	Below A line	
on is le	SILT and CLAY	МН	Inorganic silt	Low to medium	None to slow	Low to medium	Below A line	
soils (m e fracti	(high plasticity)	СН	Inorganic clay of high plasticity	High to very high	None	High	Above A line	
inegrainedsoils (more than oversize fraction is les		ОН	Organic clay of medium to high plasticity, organic silt	Medium to high	None to very slow	Low to medium	Below A line	
.S Highly organic soil Pt Peat, highly organic soil		-	-	-	_			

Laboratory Classification Criteria

A well graded coarse grained soil is one for which the coefficient of uniformity Cu > 4 and the coefficient of curvature $1 < C_c < 3$. Otherwise, the soil is poorly graded. These coefficients are given by:


$$C_U = \frac{D_{60}}{D_{10}}$$
 and $C_C = \frac{(D_{30})^2}{D_{10} D_{60}}$

Where D_{10} , D_{30} and D_{60} are those grain sizes for which 10%, 30% and 60% of the soil grains, respectively, are smaller.

NOTES

- 1 For a coarse grained soil with a fines content between 5% and 12%, the soil is given a dual classification comprising the two group symbols separated by a dash; for example, for a poorly graded gravel with between 5% and 12% silt fines, the classification is GP-GM.
- Where the grading is determined from laboratory tests, it is defined by coefficients of curvature (C_c) and uniformity (C_u) derived from the particle size distribution curve.
- 3 Clay soils with liquid limits > 35% and ≤ 50% may be classified as being of medium plasticity.
- The U line on the Modified Casagrande Chart is an approximate upper bound for most natural soils.

Modified Casagrande Chart for Classifying Silts and Clays according to their Behaviour

LOG SYMBOLS

Log Column	Symbol	Definition				
Groundwater Record		Standing water level.	Standing water level. Time delay following completion of drilling/excavation may be shown.			
		Extent of borehole/tes	Extent of borehole/test pit collapse shortly after drilling/excavation.			
		Groundwater seepage	Groundwater seepage into borehole or test pit noted during drilling or excavation.			
Samples	ES U50 DB DS ASB ASS	Undisturbed 50mm di Bulk disturbed sample Small disturbed bag sa Soil sample taken ove	Sample taken over depth indicated, for environmental analysis. Undisturbed 50mm diameter tube sample taken over depth indicated. Bulk disturbed sample taken over depth indicated. Small disturbed bag sample taken over depth indicated. Soil sample taken over depth indicated, for asbestos analysis. Soil sample taken over depth indicated, for acid sulfate soil analysis.			
Field Tests	N = 17 4, 7, 10	Standard Penetration figures show blows pe	Test (SPT) performed be	tween depths indicated by lines. Individual usal' refers to apparent hammer refusal within		
	N _c = 5 7 3R	figures show blows pe	r 150mm penetration for 6	netween depths indicated by lines. Individual 0° solid cone driven by SPT hammer. 'R' refers anding 150mm depth increment.		
	VNS = 25 PID = 100	_	Vane shear reading in kPa of undrained shear strength. Photoionisation detector reading in ppm (soil sample headspace test).			
Moisture Condition (Fine Grained Soils)	w > PL w ≈ PL w < PL w ≈ LL w > LL	Moisture content esti Moisture content esti Moisture content esti	Moisture content estimated to be greater than plastic limit. Moisture content estimated to be approximately equal to plastic limit. Moisture content estimated to be less than plastic limit. Moisture content estimated to be near liquid limit. Moisture content estimated to be wet of liquid limit.			
(Coarse Grained Soils)	D M W	DRY — runs freely through fingers. MOIST — does not run freely but no free water visible on soil surface. WET — free water visible on soil surface.				
Strength (Consistency) Cohesive Soils	VS S F St VSt Hd Fr ()	SOFT - unco	onfined compressive streng onfined compressive streng ngth not attainable, soil cru	gth > 25kPa and \leq 50kPa. gth > 50kPa and \leq 100kPa. gth > 100kPa and \leq 200kPa. gth > 200kPa and \leq 400kPa. gth > 400kPa.		
Density Index/ Relative Density	elative Density		Density Index (I _D) Range (%)	SPT 'N' Value Range (Blows/300mm)		
(Cohesionless Soils)	VL L MD D VD	VERY LOOSE LOOSE MEDIUM DENSE DENSE VERY DENSE Bracketed symbol indi	\leq 15 > 15 and \leq 35 > 35 and \leq 65 > 65 and \leq 85 > 85 icates estimated density ba	0-4 4-10 10-30 30-50 > 50 sed on ease of drilling or other assessment.		
Hand Penetrometer Readings	300 250			sive strength. Numbers indicate individual ial unless noted otherwise.		

Log Column	Symbol	Definition		
Remarks	'V' bit	Hardened steel 'V' shaped bit.		
	'TC' bit	Twin pronged tu	ingsten carbide bit.	
	T ₆₀	Penetration of a without rotation	uger string in mm under static load of rig applied by drill head hydraulics of augers.	
	Soil Origin	The geological or	rigin of the soil can generally be described as:	
		RESIDUAL	 soil formed directly from insitu weathering of the underlying rock. No visible structure or fabric of the parent rock. 	
		EXTREMELY WEATHERED	 soil formed directly from insitu weathering of the underlying rock. Material is of soil strength but retains the structure and/or fabric of the parent rock. 	
		ALLUVIAL	– soil deposited by creeks and rivers.	
		ESTUARINE	 soil deposited in coastal estuaries, including sediments caused by inflowing creeks and rivers, and tidal currents. 	
		MARINE	 soil deposited in a marine environment. 	
		AEOLIAN	 soil carried and deposited by wind. 	
		COLLUVIAL	 soil and rock debris transported downslope by gravity, with or without the assistance of flowing water. Colluvium is usually a thick deposit formed from a landslide. The description 'slopewash' is used for thinner surficial deposits. 	
		LITTORAL	 beach deposited soil. 	

Classification of Material Weathering

Term	Abbreviation		Definition	
Residual Soil	RS		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.	
Extremely Weathered		xw		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.
Highly Weathered	Distinctly Weathered	HW	The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.	
(Note 1) Moderately Weathered		MW		The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly Weathered		SW		Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh		FR		Rock shows no sign of decomposition of individual minerals or colour changes.

NOTE 1: The term 'Distinctly Weathered' is used where it is not practicable to distinguish between 'Highly Weathered' and 'Moderately Weathered' rock. 'Distinctly Weathered' is defined as follows: 'Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores'. There is some change in rock strength.

Rock Material Strength Classification

			Guide to Strength		
Term	Abbreviation	Uniaxial Compressive Strength (MPa)	Point Load Strength Index Is ₍₅₀₎ (MPa)	Field Assessment	
Very Low Strength	VL	0.6 to 2	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30mm thick can be broken by finger pressure.	
Low Strength	L	2 to 6	0.1 to 0.3	Easily scored with a knife; indentations 1mm to 3mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150mm long by 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.	
Medium Strength	М	6 to 20	0.3 to 1	Scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty.	
High Strength	н	20 to 60	1 to 3	A piece of core 150mm long by 50mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.	
Very High Strength	VH	60 to 200	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.	
Extremely High Strength	ЕН	> 200	> 10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.	

Abbreviations Used in Defect Description

Cored Borehole Lo	Cored Borehole Log Column		Description
Point Load Strengt	th Index	• 0.6	Axial point load strength index test result (MPa)
		x 0.6	Diametral point load strength index test result (MPa)
Defect Details	– Туре	Be	Parting – bedding or cleavage
		CS	Clay seam
		Cr	Crushed/sheared seam or zone
		J	Joint
		Jh	Healed joint
		Ji	Incipient joint
		XWS	Extremely weathered seam
	– Orientation	Degrees	Defect orientation is measured relative to normal to the core axis (ie. relative to the horizontal for a vertical borehole)
	– Shape	Р	Planar
		С	Curved
		Un	Undulating
		St	Stepped
		lr	Irregular
	– Roughness	Vr	Very rough
		R	Rough
		S	Smooth
		Ро	Polished
		SI	Slickensided
	– Infill Material	Ca	Calcite
		Cb	Carbonaceous
		Clay	Clay
		Fe	Iron
		Qz	Quartz
		Ру	Pyrite
	Coatings	Cn	Clean
		Sn	Stained – no visible coating, surface is discoloured
		Vn	Veneer – visible, too thin to measure, may be patchy
		Ct	Coating ≤ 1mm thick
		Filled	Coating > 1mm thick
	– Thickness	mm.t	Defect thickness measured in millimetres